In this paper we study the degenerate differential system with delay:E(t)=Ax(t)+Bx(t-1)+f(t),give the canonical form of this systems and study this form of degeneration system with delay,have some results for the so...In this paper we study the degenerate differential system with delay:E(t)=Ax(t)+Bx(t-1)+f(t),give the canonical form of this systems and study this form of degeneration system with delay,have some results for the solvability of such systems and the uniqueness of their solutions.展开更多
Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies...Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies. Large deviations between model and true edges are common because of the interference of depth and errors in computing the derivatives; thus, edge detection methods cannot provide information about the depth of the source. To simultaneously obtain the horizontal extent and depth of geophysical anomalies, we use normalized edge detection filters, which normalize the edge detection function at different depths, and the maxima that correspond to the location of the source. The errors between model and actual edges are minimized as the depth of the source decreases and the normalized edge detection method recognizes the extent of the source based on the maxima, allowing for reliable model results. We demonstrate the applicability of the normalized edge detection filters in defining the horizontal extent and depth using synthetic and actual aeromagnetic data.展开更多
文摘In this paper we study the degenerate differential system with delay:E(t)=Ax(t)+Bx(t-1)+f(t),give the canonical form of this systems and study this form of degeneration system with delay,have some results for the solvability of such systems and the uniqueness of their solutions.
基金supported by the China Postdoctoral Science Foundation (No.2014M551188)the Deep Exploration in China Sinoprobe-09-01 (No.201011078)
文摘Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies. Large deviations between model and true edges are common because of the interference of depth and errors in computing the derivatives; thus, edge detection methods cannot provide information about the depth of the source. To simultaneously obtain the horizontal extent and depth of geophysical anomalies, we use normalized edge detection filters, which normalize the edge detection function at different depths, and the maxima that correspond to the location of the source. The errors between model and actual edges are minimized as the depth of the source decreases and the normalized edge detection method recognizes the extent of the source based on the maxima, allowing for reliable model results. We demonstrate the applicability of the normalized edge detection filters in defining the horizontal extent and depth using synthetic and actual aeromagnetic data.