水分解是一种利用可再生能源驱动的绿色制氢方法,零碳排放特性使其成为解决氢能源生产的重要途径.在电化学水分解中,制备高活性和稳定性的催化剂至关重要.高熵合金(HEAs)由于独特的结构和性能使其成为理想的催化剂材料,其多元成分和可...水分解是一种利用可再生能源驱动的绿色制氢方法,零碳排放特性使其成为解决氢能源生产的重要途径.在电化学水分解中,制备高活性和稳定性的催化剂至关重要.高熵合金(HEAs)由于独特的结构和性能使其成为理想的催化剂材料,其多元成分和可调组成提供了丰富的表面活性位点和灵活的催化特性,有望提高水分解的效率并降低成本.然而,简易高效地制备HEAs仍面临挑战,且目前对HEA催化剂的结构-活性关系的了解存在不足.因此,探索一种简便有效的方法用以制备高性能HEAs催化剂,并深入理解其在水分解反应中的作用机制和结构演变,能够为未来绿色制氢技术的发展提供重要的科学基础和技术支持.本文采用了电化学测量、CuK-边和PtL3-边的原位同步辐射X射线吸收光谱(XAS)测试以及密度泛函理论(DFT)计算相结合的方法,系统地研究了高熵合金电催化剂PtPdRhRuCu/C的析氢反应(HER)活性、反应机制以及结构演变规律.PtPdRhRuCu HEAs纳米颗粒由简便的一步溶剂热法制备,直径约为6.7±0.6 nm,其合金结构和元素分布通过多种表征手段(扫描透射电子显微镜、X射线衍射和能量色散X射线光谱等)得到确认.XAS对Cu K-边和PtL3-边的分析结果显示,HEAs纳米颗粒表面的少量铜氧化物在HER过程中被还原至金属态.扩展X射线吸收精细结构的拟合结果表明,HEAs在工况HER中保持了金属态和无序的原子排列,没有新的分离相形成.电化学测试结果表明,得益于多金属活性位点,PtPdRhRuCu/C催化剂在酸性和碱性条件下均表现出较好的HER活性和耐久性.在10 m Acm^(-2)的电流密度下,该催化剂在1molL^(-1)KOH中具有23.3 m V的极低过电位,优于商业Pt/C催化剂(50.3 m V),其质量活性是Pt/C的7.9倍,达到3.0 Amg^(-1)Pt.PtPdRhRuCu的高熵效应显著提升了催化剂在HER中的长期稳定性,在稳定性测试中,PtPdRhRuCu/C催化剂在10000次循环伏安测试后几乎无性能衰减,而Pt/C的过电位增加了约24 m V.在-55 m V过电位下的30 h的HER测试中,PtPdRhRuCu/C保持95.7%的初始电流密度,而Pt/C衰减了53.6%.在酸性条件下,PtPdRhRuCu/C的循环稳定性和耐久性也优于Pt/C.DFT计算结果表明,PtPdRhRuCu/C较好的HER性能和稳定性归因于高熵合金的协同效应,多金属成分提供了多样的活性位点,优化了HER反应路径,特别是在Volmer步骤中降低了水裂解的反应能垒.PtPdRhRuCu/C上的HER过程遵循Volmer-Tafel机理,水分子优先吸附在Ru位点,促进HO-H键的解离,解离出的质子迁移到Pt上,而OH通过Ru和Rh的桥接作用而稳定,最终在Cu上释放H2.综上,本文展示了高熵合金在HER中较好的性能,并通过详细的表征深入理解了其构-效关系.研究成果为高熵合金催化剂的合理设计和应用提供理论支持,为未来高效、耐久和低成本的绿色制氢技术提供重要的科学依据和技术支持.展开更多
为了进一步提高Bi_(2)GeO_(5)的催化活性,为炸药废水实际处理提供可借鉴的方法,采用一步溶剂热法,以一定比例的水和二乙醇胺混合物为溶剂,AgNO_(3)为Ag源,用Ag修饰Bi_(2)GeO_(5)纳米粒子,制备Ag修饰的Bi_(2)GeO_(5)光催化剂。利用X射线...为了进一步提高Bi_(2)GeO_(5)的催化活性,为炸药废水实际处理提供可借鉴的方法,采用一步溶剂热法,以一定比例的水和二乙醇胺混合物为溶剂,AgNO_(3)为Ag源,用Ag修饰Bi_(2)GeO_(5)纳米粒子,制备Ag修饰的Bi_(2)GeO_(5)光催化剂。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱仪(XPS)、N_(2)吸附-脱附和紫外-可见分光光度计(UV-Vis)对所制备的复合光催化剂进行表征,随后通过降解TNT试验测试所制备复合材料的光催化性能,评估了不同配比的Ag修饰对Bi_(2)GeO_(5)光催化剂所制备产物的光催化活性的影响。结果表明,0.1 g Ag修饰的Bi_(2)GeO_(5)光降解TNT的性能要优于其他比例修饰的Bi_(2)GeO_(5),在25 min内光催化降解率达到94%,TNT几乎被完全降解。适量Ag修饰提高了Bi_(2)GeO_(5)光催化剂的电荷分离和转移。展开更多
文摘水分解是一种利用可再生能源驱动的绿色制氢方法,零碳排放特性使其成为解决氢能源生产的重要途径.在电化学水分解中,制备高活性和稳定性的催化剂至关重要.高熵合金(HEAs)由于独特的结构和性能使其成为理想的催化剂材料,其多元成分和可调组成提供了丰富的表面活性位点和灵活的催化特性,有望提高水分解的效率并降低成本.然而,简易高效地制备HEAs仍面临挑战,且目前对HEA催化剂的结构-活性关系的了解存在不足.因此,探索一种简便有效的方法用以制备高性能HEAs催化剂,并深入理解其在水分解反应中的作用机制和结构演变,能够为未来绿色制氢技术的发展提供重要的科学基础和技术支持.本文采用了电化学测量、CuK-边和PtL3-边的原位同步辐射X射线吸收光谱(XAS)测试以及密度泛函理论(DFT)计算相结合的方法,系统地研究了高熵合金电催化剂PtPdRhRuCu/C的析氢反应(HER)活性、反应机制以及结构演变规律.PtPdRhRuCu HEAs纳米颗粒由简便的一步溶剂热法制备,直径约为6.7±0.6 nm,其合金结构和元素分布通过多种表征手段(扫描透射电子显微镜、X射线衍射和能量色散X射线光谱等)得到确认.XAS对Cu K-边和PtL3-边的分析结果显示,HEAs纳米颗粒表面的少量铜氧化物在HER过程中被还原至金属态.扩展X射线吸收精细结构的拟合结果表明,HEAs在工况HER中保持了金属态和无序的原子排列,没有新的分离相形成.电化学测试结果表明,得益于多金属活性位点,PtPdRhRuCu/C催化剂在酸性和碱性条件下均表现出较好的HER活性和耐久性.在10 m Acm^(-2)的电流密度下,该催化剂在1molL^(-1)KOH中具有23.3 m V的极低过电位,优于商业Pt/C催化剂(50.3 m V),其质量活性是Pt/C的7.9倍,达到3.0 Amg^(-1)Pt.PtPdRhRuCu的高熵效应显著提升了催化剂在HER中的长期稳定性,在稳定性测试中,PtPdRhRuCu/C催化剂在10000次循环伏安测试后几乎无性能衰减,而Pt/C的过电位增加了约24 m V.在-55 m V过电位下的30 h的HER测试中,PtPdRhRuCu/C保持95.7%的初始电流密度,而Pt/C衰减了53.6%.在酸性条件下,PtPdRhRuCu/C的循环稳定性和耐久性也优于Pt/C.DFT计算结果表明,PtPdRhRuCu/C较好的HER性能和稳定性归因于高熵合金的协同效应,多金属成分提供了多样的活性位点,优化了HER反应路径,特别是在Volmer步骤中降低了水裂解的反应能垒.PtPdRhRuCu/C上的HER过程遵循Volmer-Tafel机理,水分子优先吸附在Ru位点,促进HO-H键的解离,解离出的质子迁移到Pt上,而OH通过Ru和Rh的桥接作用而稳定,最终在Cu上释放H2.综上,本文展示了高熵合金在HER中较好的性能,并通过详细的表征深入理解了其构-效关系.研究成果为高熵合金催化剂的合理设计和应用提供理论支持,为未来高效、耐久和低成本的绿色制氢技术提供重要的科学依据和技术支持.
文摘为了进一步提高Bi_(2)GeO_(5)的催化活性,为炸药废水实际处理提供可借鉴的方法,采用一步溶剂热法,以一定比例的水和二乙醇胺混合物为溶剂,AgNO_(3)为Ag源,用Ag修饰Bi_(2)GeO_(5)纳米粒子,制备Ag修饰的Bi_(2)GeO_(5)光催化剂。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱仪(XPS)、N_(2)吸附-脱附和紫外-可见分光光度计(UV-Vis)对所制备的复合光催化剂进行表征,随后通过降解TNT试验测试所制备复合材料的光催化性能,评估了不同配比的Ag修饰对Bi_(2)GeO_(5)光催化剂所制备产物的光催化活性的影响。结果表明,0.1 g Ag修饰的Bi_(2)GeO_(5)光降解TNT的性能要优于其他比例修饰的Bi_(2)GeO_(5),在25 min内光催化降解率达到94%,TNT几乎被完全降解。适量Ag修饰提高了Bi_(2)GeO_(5)光催化剂的电荷分离和转移。
基金Doctoral Scientific Research Foundation of Shanxi Datong University(2014-B-11)National Natural Science Foundation of China(21174114)+3 种基金National Natural Science Foundation of China(21363021)Program for Changjiang Scholars and Innovative Research Team in University of M inistry of Education of China(IRT1177)Scientific and Technical plan project of Gansu province(1204GKCA006)Scientific and Technical Innovation Project of Northw est Normal University(nw nu-kjcxgc-03-63)~~