CO has been used widely in the production process of colliery as an index gas to predict spontaneous combustion of coal. But in some collieries there are CO gas in the upper corner of the face all the times, sometime ...CO has been used widely in the production process of colliery as an index gas to predict spontaneous combustion of coal. But in some collieries there are CO gas in the upper corner of the face all the times, sometime CO gas even exceeds the regulated critical index. This phenomenon is much more obvious in the fully-mechanized longwall face and fully-mechanized longwall and top-coal caving face. Although many measures of fire-proof and fire-extinguishing have been adopted, the flowing amount of CO gas can be only decreasd, but can not be eliminated completely. Using the different kinds of coal, the experiment of coal oxidation was made at the low temperature. The experiment indicates that some kinds of coal can produce CO under the condition of normal temperature oxidation, sometime the CO consistency is very high, and the intension of CO can be decreased with oxidation time prolonging. Selecting rational critical value of CO is the kev to predicting spontaneous combustion of coal correctly and reliably. The problem of selecting retional critical value of CO was studied. Finally, the amount of CO gas released by different kinds of coal was obtained under normal temperature condition.展开更多
Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-T...Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-TiO2 were used as catalytic supports to load Pd nanoparticles for H2 O2 direct synthesis from H2 and O2. The as-prepared samples were systematically studied by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), air isothermal microcalorimeter, temperature-programmed reduction of H2(H2-TPR), and so on. The catalytic results showed that H2 O2 productivity and H2O2 selectivity of Pd/C-TiO2 firstly rose with increasing carbon content and then declined. Pd/C-TiO2 catalyst with 1.89 wt% of carbon content showed the best catalytic performance that had 61.2% of selectivity and 2192 mmol H2O2/g Pd/h of productivity, which were significantly better than those of pristine Pd/TiO2(45.2% and 1827 mmol H2O2/g Pd/h). Various characterization results displayed that the carbon species were heterogeneously dispersed on TiO2 surface. Moreover, no obvious geometric transformation in supports and Pd nanoparticles were observed among different catalysts. The superficial hydrophobicity of Pd/C-TiO2 was gradually promoted with increasing carbon content, which led to the corresponding decrease in adsorption energy of H2O2 with catalysts. According to structure-performance relationship analyses, the heterogeneous interfacial engineering of carbon could maintain the interaction of Pd nanoparticles with TiO2 and simultaneously accelerate the H2O2 desorption. Both factors further determined the excellent H2O2 direct synthesis performance of Pd/C-TiO2.展开更多
Summarized the four main sources of CO gas on the working face based on investigation and local observation: firstly,it analyzed the mechanism that CO gas was produced by spontaneous combustion and oxygenation of gob ...Summarized the four main sources of CO gas on the working face based on investigation and local observation: firstly,it analyzed the mechanism that CO gas was produced by spontaneous combustion and oxygenation of gob residual coal;next,it illus- trated the theory that special coal seam deposits natural CO gas,and provided correlative experiment data;and then,it illustrated the reason of the CO gas in working face in- creased relatively in the course of coal cutter's shearing,according to the translation be- tween mechanism energy and inner energy and the rupture of carbon molecule side chain during coal exploitation;lastly,illustrated the reason of CO gas appearance and the rela- tively release quantity during coal mine blasting underground.We find out the source of CO gas on the working face accurately,and provide advantages for appropriate prevention and practical management measures.展开更多
Reburning technology is one of the most cost-effective NOx reduction strategies for coal combustion systems. In this paper, a nitric oxide submodel incorporated into a comprehensive coal combustion model was developed...Reburning technology is one of the most cost-effective NOx reduction strategies for coal combustion systems. In this paper, a nitric oxide submodel incorporated into a comprehensive coal combustion model was developed for predicting NOx reduction in a 93 kW laboratory-scale coal combustion furnace by reburning. This NO submodel, including reburning mechanism, requires the solution of only two transport equations to model the behavior of NO reduction in the reburning process. A number of experiments have been performed in the same furnace, and the experimental data obtained from the optimized reburn configuration was used to validate the model. Measurements and predictions both show above 50% reduction of NO emissions for the optimized reburning process. Profile comparisons show that the predicted temperature and oxygen concentration match well with the measurements, and the general trend of predicted NO concentration is very similar to that measured. The results of this study show that the present nitric oxide submodel depicts quite well the observed behaviour of NO annihilation in the reburning process. It is expected that this usable and computationally economic model represents a useful tool to simulate the gaseous fuel reburning process for the researchers concerned with practical combustors.展开更多
基金Science of Fire Natural Science Foundation of China(2001CB40960102)
文摘CO has been used widely in the production process of colliery as an index gas to predict spontaneous combustion of coal. But in some collieries there are CO gas in the upper corner of the face all the times, sometime CO gas even exceeds the regulated critical index. This phenomenon is much more obvious in the fully-mechanized longwall face and fully-mechanized longwall and top-coal caving face. Although many measures of fire-proof and fire-extinguishing have been adopted, the flowing amount of CO gas can be only decreasd, but can not be eliminated completely. Using the different kinds of coal, the experiment of coal oxidation was made at the low temperature. The experiment indicates that some kinds of coal can produce CO under the condition of normal temperature oxidation, sometime the CO consistency is very high, and the intension of CO can be decreased with oxidation time prolonging. Selecting rational critical value of CO is the kev to predicting spontaneous combustion of coal correctly and reliably. The problem of selecting retional critical value of CO was studied. Finally, the amount of CO gas released by different kinds of coal was obtained under normal temperature condition.
基金supported by the National Natural Science Foundation of China(21878143,21476106,21838004)Joint Re-search Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao Young Scholars(21729601)+1 种基金the fund of State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201702)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)~~
文摘Series of heterogeneous interfacial engineered TiO2(C-TiO2) with controllable carbon content were facilely synthesized by incipient-wet impregnation using glucose and subsequent thermal carbonization. The obtained C-TiO2 were used as catalytic supports to load Pd nanoparticles for H2 O2 direct synthesis from H2 and O2. The as-prepared samples were systematically studied by transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), air isothermal microcalorimeter, temperature-programmed reduction of H2(H2-TPR), and so on. The catalytic results showed that H2 O2 productivity and H2O2 selectivity of Pd/C-TiO2 firstly rose with increasing carbon content and then declined. Pd/C-TiO2 catalyst with 1.89 wt% of carbon content showed the best catalytic performance that had 61.2% of selectivity and 2192 mmol H2O2/g Pd/h of productivity, which were significantly better than those of pristine Pd/TiO2(45.2% and 1827 mmol H2O2/g Pd/h). Various characterization results displayed that the carbon species were heterogeneously dispersed on TiO2 surface. Moreover, no obvious geometric transformation in supports and Pd nanoparticles were observed among different catalysts. The superficial hydrophobicity of Pd/C-TiO2 was gradually promoted with increasing carbon content, which led to the corresponding decrease in adsorption energy of H2O2 with catalysts. According to structure-performance relationship analyses, the heterogeneous interfacial engineering of carbon could maintain the interaction of Pd nanoparticles with TiO2 and simultaneously accelerate the H2O2 desorption. Both factors further determined the excellent H2O2 direct synthesis performance of Pd/C-TiO2.
文摘Summarized the four main sources of CO gas on the working face based on investigation and local observation: firstly,it analyzed the mechanism that CO gas was produced by spontaneous combustion and oxygenation of gob residual coal;next,it illus- trated the theory that special coal seam deposits natural CO gas,and provided correlative experiment data;and then,it illustrated the reason of the CO gas in working face in- creased relatively in the course of coal cutter's shearing,according to the translation be- tween mechanism energy and inner energy and the rupture of carbon molecule side chain during coal exploitation;lastly,illustrated the reason of CO gas appearance and the rela- tively release quantity during coal mine blasting underground.We find out the source of CO gas on the working face accurately,and provide advantages for appropriate prevention and practical management measures.
基金Project 2004CB217704-4 supported by the Special Funds for Major State Basic Research Projects of China and 306012 by the Key Grant Project of Chinese Ministry of Education
文摘Reburning technology is one of the most cost-effective NOx reduction strategies for coal combustion systems. In this paper, a nitric oxide submodel incorporated into a comprehensive coal combustion model was developed for predicting NOx reduction in a 93 kW laboratory-scale coal combustion furnace by reburning. This NO submodel, including reburning mechanism, requires the solution of only two transport equations to model the behavior of NO reduction in the reburning process. A number of experiments have been performed in the same furnace, and the experimental data obtained from the optimized reburn configuration was used to validate the model. Measurements and predictions both show above 50% reduction of NO emissions for the optimized reburning process. Profile comparisons show that the predicted temperature and oxygen concentration match well with the measurements, and the general trend of predicted NO concentration is very similar to that measured. The results of this study show that the present nitric oxide submodel depicts quite well the observed behaviour of NO annihilation in the reburning process. It is expected that this usable and computationally economic model represents a useful tool to simulate the gaseous fuel reburning process for the researchers concerned with practical combustors.