LaMn1-xCuxO3±δ perovskite oxides (x = 0, 0.2, 0.4, 0.6, 0.8, 1) were prepared by two different methods, the Pechini and sol-gel methods. The catalysts were characterized by Fourier transform infrared spectroscop...LaMn1-xCuxO3±δ perovskite oxides (x = 0, 0.2, 0.4, 0.6, 0.8, 1) were prepared by two different methods, the Pechini and sol-gel methods. The catalysts were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray fluorescence spectroscopy, N2 adsorption, and temperature-programmed reduction. Their catalytic activity in the oxidation of methane and CO was evaluated. EDS and SEM results showed that the Pechini samples had more homogeneity and smaller particles (higher specific surface area). The catalytic activity for methane combustion was highest for x = 0.2. In CO oxidation, the oxides with x = 0.2 and x = 0.4 were the most active. The Pechini samples had higher activity and stability than the sol-gel samples.展开更多
Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analys...Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analysis of their basic properties and oxidation behavior. There is particular emphasis on Ru‐catalyzed gas‐solid catalytic reactions, including the catalytic oxidation of VOCs, preferential oxidation of CO, synthesis of ammonia, oxidation of HCl and partial oxidation of CH4. Recent litera‐ture on catalysis is summarized and compared. Finally, we describe current challenges in the field and propose approaches for future development of Ru‐based catalysts.展开更多
A series of functional,tungsten-containing mesoporous silica materials(W-SiO2) have been fabricated directly from an ionic liquid that contained imidazole and polyoxometalate,which acted as mesoporous template and m...A series of functional,tungsten-containing mesoporous silica materials(W-SiO2) have been fabricated directly from an ionic liquid that contained imidazole and polyoxometalate,which acted as mesoporous template and metal source respectively.These materials were then characterized through X-ray diffraction(XRD),transmission electron microscopy(TEM),Raman spectroscopy,Fourier transform infrared spectra(FTIR),diffuse reflectance spectra(DRS),and N2 adsorption-desorption,which were found to contain tungsten species that were effectively dispersed throughout the structure.The as-prepared materials W-SiO2 were also found to possess a mesoporous structure.The pore diameters of the respective sample W-SiO2-20 determined from the TEM images ranged from 2 to 4 nm,which was close to the average pore size determined from the nitrogen desorption isotherm(2.9 nm).The materials were evaluated as catalysts for the heterogeneous oxidative desulfurization of dibenzothiophene(DBT),which is able to achieve deep desulfurization within 40 min under the optimal conditions(Catalyst(W-SiO2-20)= 0.01 g,temperature = 60℃,oxidant(H2O2)= 20 μL).For the removal of different organic sulfur compounds within oil,the ability of the catalyst(W-SiO2-20) under the same conditions to remove sulfur compounds decreased in the order:4,6-dimethyldibenzothiophene Dibenzothiophene Benzothiophene 1-dodecanethiol.Additionally,they did not require organic solvents as an extractant in the heterogeneous oxidative desulfurization process.After seven separate catalytic cycles,the desulfurization efficiency was still as high as 90.3%.From the gas chromatography-mass spectrometer analysis,DBT was entirely oxidized to its corresponding sulfone DBTO2 after reaction.A mechanism for the heterogeneous desulfurization reaction was proposed.展开更多
Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3...Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.展开更多
CO2 selective reduction to CO with H2 over a CeO2-supported nano-Au catalyst at atmospheric pres- sure was investigated. A high CO2 conversion, approaching the thermodynamic equilibrium value, and nearly 100% CO selec...CO2 selective reduction to CO with H2 over a CeO2-supported nano-Au catalyst at atmospheric pres- sure was investigated. A high CO2 conversion, approaching the thermodynamic equilibrium value, and nearly 100% CO selectivity were obtained. The surface formate intermediates generated during the reverse water-gas shift reaction at 400 ℃ were identified using in situ diffuse-reflectance infra- red Fourier-transform spectroscopy. The formate consumption to give CO and H20, determined using mass spectrometry, indicated that the reaction proceeded via an associative formate mecha- nism; this contributes to the high Au/CeO2 catalytic activity at low temperatures.展开更多
[Objective] This study aimed to investigate the mechanism of innovative montmorillonite for diarrhea treatment. [Method] Thirty healthy weanling piglets (Duroc x Landrace x Yorkshire) were randomly divided into five...[Objective] This study aimed to investigate the mechanism of innovative montmorillonite for diarrhea treatment. [Method] Thirty healthy weanling piglets (Duroc x Landrace x Yorkshire) were randomly divided into five groups and fed with basal diet, basal diet + 1 g/kg innovative montmorillonite, basal diet + 3 g/kg innovative montmorillonite, basal diet + 5 g/kg innovative montmorillonite and basal diet + 3 g/kg Bacillus subtilis microecologic agent, respectively. After four weeks, blood samples were collected via precaval vein, to detect the content of TFF3, NO and SOD in serum by ELISA kits. [Result] Compared with blank control group, the content of TFF3, NO and SOD in high-dose innovative montmorillonite group was extremely significantly increased, extremely significantly reduced and significantly in- creased, respectively; the content of TFF3 and NO in middle-dose innovative mont- morillonite group was significantly increased and significantly reduced, respectively. [Conclusion] Innovative montmorillonite may exert beneficial therapeutic actions on diarrhea by increasing TFF3 and SOD levels and decreasing NO level.展开更多
Objective: To explore the pathogenesis of avascular necrosis of femoral head(ANFH) and search an effective method for clinical practice. Methods: Twenty-four Japanese rabbitswere divided into 2 groups of models and co...Objective: To explore the pathogenesis of avascular necrosis of femoral head(ANFH) and search an effective method for clinical practice. Methods: Twenty-four Japanese rabbitswere divided into 2 groups of models and controls. ANFH models were produced byintramuscular-injection of large dosage of steroid to rabbits for 8 weeks. From the 4th, 8th and12th week after production of models, 2 rabbits of each group were sacrificed to observe thestructure of femoral head through light microscope and scanning electron microscope. The contents ofNitric Oxide (NO), tissue-type plasminogen activator (t-PA) and -plasminogen activator inhibitor(PAI) in plasma of the 4 rabbits in each group were estimated at the same time. Results: Comparedwith control group, the rabbits of model group exhibited many differences: such as osteoporosis offemoral head, the presence of more bone lacuna and fat cell through light microscope observing; thebroken and sunk bone trabecula, the loosen and broken collagen fibers on the surface of bone matrixthrough scanning electron microscope observing. Compared with control group, the Concentration ofNO and t-PA in plasma of the model rabbits decreased obviously, but the Concentration of the PAIincreased obviously. Conclusion: The steroid-induced ANFH might be related to the lower level of NOand the descent of fibrinolytic activity.展开更多
Recently,a one-pot self-assembly method was proposed for the synthesis of mesoporous Al2O3 and MOx-Al2O3 composite materials.However,few attempts have been made to use mesoporous MOx-Al2O3 composites to support metal ...Recently,a one-pot self-assembly method was proposed for the synthesis of mesoporous Al2O3 and MOx-Al2O3 composite materials.However,few attempts have been made to use mesoporous MOx-Al2O3 composites to support metal oxides for catalysis.In the present work,mesoporous MOx-Al2O3(M = Mn,Fe,Co,Ni,Cu,Ba)materials were prepared by a one-pot self-assembly method using Pluronic P123 as a structure-directing agent.The obtained mesoporous materials were loaded with Rh2O3 nanoparticles via impregnation with Rh(NO3)3 followed by calcination in air at 500°C.The resulting catalysts were characterized by X-ray diffraction,N2 adsorption-desorption measurements,transmission electron microscopy,inductively coupled plasma optical emission spectrometry,X-ray photoelectron spectroscopy,and their catalytic activity and stability for CO oxidation and N2O decomposition were tested.The Rh2O3 nanoparticles were found to be on the order of1 nm in size and were highly dispersed on the high surface area mesoporous MOx-Al2O3 supports.A number of the Rh2O3/mesoporous MOx-Al2O3 catalysts exhibited higher catalytic activity than the Rh2O3/mesoporous Al2O3 prepared for comparison.展开更多
Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐p...Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐precipitation method. The textural properties of Zn2SnO4 support have been tuned by varying the molar ratio between base (N2H4·H2O) and metal ion (Zn2+) to be 4/1, 8/1 and 16/1. The catalytic tests for CO oxidation reaction revealed that the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ = 8/1 was the highest, while the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ =16/1 was almost identical to that of the pure support. Both fresh and used catalysts have been characterized by multiple techniques including nitrogen adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray adsorption fine structure, and tempera‐ture‐programmed reduction by hydrogen. These demonstrated that the textural properties, espe‐cially pore volume and pore size distribution, of Zn2SnO4 play crucial roles in the averaged size of gold nanoparticles, and thus determine the catalytic activity of Au‐Zn2SnO4 for CO oxidation.展开更多
文摘LaMn1-xCuxO3±δ perovskite oxides (x = 0, 0.2, 0.4, 0.6, 0.8, 1) were prepared by two different methods, the Pechini and sol-gel methods. The catalysts were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray fluorescence spectroscopy, N2 adsorption, and temperature-programmed reduction. Their catalytic activity in the oxidation of methane and CO was evaluated. EDS and SEM results showed that the Pechini samples had more homogeneity and smaller particles (higher specific surface area). The catalytic activity for methane combustion was highest for x = 0.2. In CO oxidation, the oxides with x = 0.2 and x = 0.4 were the most active. The Pechini samples had higher activity and stability than the sol-gel samples.
基金supported by Beijing Natural Science Foundation (8164063)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05050100)~~
文摘Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analysis of their basic properties and oxidation behavior. There is particular emphasis on Ru‐catalyzed gas‐solid catalytic reactions, including the catalytic oxidation of VOCs, preferential oxidation of CO, synthesis of ammonia, oxidation of HCl and partial oxidation of CH4. Recent litera‐ture on catalysis is summarized and compared. Finally, we describe current challenges in the field and propose approaches for future development of Ru‐based catalysts.
基金supported by the National Nature Science Foundation of China(21276117,21376111,21406092)~~
文摘A series of functional,tungsten-containing mesoporous silica materials(W-SiO2) have been fabricated directly from an ionic liquid that contained imidazole and polyoxometalate,which acted as mesoporous template and metal source respectively.These materials were then characterized through X-ray diffraction(XRD),transmission electron microscopy(TEM),Raman spectroscopy,Fourier transform infrared spectra(FTIR),diffuse reflectance spectra(DRS),and N2 adsorption-desorption,which were found to contain tungsten species that were effectively dispersed throughout the structure.The as-prepared materials W-SiO2 were also found to possess a mesoporous structure.The pore diameters of the respective sample W-SiO2-20 determined from the TEM images ranged from 2 to 4 nm,which was close to the average pore size determined from the nitrogen desorption isotherm(2.9 nm).The materials were evaluated as catalysts for the heterogeneous oxidative desulfurization of dibenzothiophene(DBT),which is able to achieve deep desulfurization within 40 min under the optimal conditions(Catalyst(W-SiO2-20)= 0.01 g,temperature = 60℃,oxidant(H2O2)= 20 μL).For the removal of different organic sulfur compounds within oil,the ability of the catalyst(W-SiO2-20) under the same conditions to remove sulfur compounds decreased in the order:4,6-dimethyldibenzothiophene Dibenzothiophene Benzothiophene 1-dodecanethiol.Additionally,they did not require organic solvents as an extractant in the heterogeneous oxidative desulfurization process.After seven separate catalytic cycles,the desulfurization efficiency was still as high as 90.3%.From the gas chromatography-mass spectrometer analysis,DBT was entirely oxidized to its corresponding sulfone DBTO2 after reaction.A mechanism for the heterogeneous desulfurization reaction was proposed.
基金supported by the National Natural Science Foundation of China(5147807051108487)the Science and Technology Project from Chongqing Education Commission(KJ1400617)~~
文摘Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.
基金supported by the National Natural Science Foundation of China (11475041, 11175036, 21373037)the Fundamental Research Funds for the Central Universities (DUT16QY49)~~
文摘CO2 selective reduction to CO with H2 over a CeO2-supported nano-Au catalyst at atmospheric pres- sure was investigated. A high CO2 conversion, approaching the thermodynamic equilibrium value, and nearly 100% CO selectivity were obtained. The surface formate intermediates generated during the reverse water-gas shift reaction at 400 ℃ were identified using in situ diffuse-reflectance infra- red Fourier-transform spectroscopy. The formate consumption to give CO and H20, determined using mass spectrometry, indicated that the reaction proceeded via an associative formate mecha- nism; this contributes to the high Au/CeO2 catalytic activity at low temperatures.
基金Supported by Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province(CX(13)5030)~~
文摘[Objective] This study aimed to investigate the mechanism of innovative montmorillonite for diarrhea treatment. [Method] Thirty healthy weanling piglets (Duroc x Landrace x Yorkshire) were randomly divided into five groups and fed with basal diet, basal diet + 1 g/kg innovative montmorillonite, basal diet + 3 g/kg innovative montmorillonite, basal diet + 5 g/kg innovative montmorillonite and basal diet + 3 g/kg Bacillus subtilis microecologic agent, respectively. After four weeks, blood samples were collected via precaval vein, to detect the content of TFF3, NO and SOD in serum by ELISA kits. [Result] Compared with blank control group, the content of TFF3, NO and SOD in high-dose innovative montmorillonite group was extremely significantly increased, extremely significantly reduced and significantly in- creased, respectively; the content of TFF3 and NO in middle-dose innovative mont- morillonite group was significantly increased and significantly reduced, respectively. [Conclusion] Innovative montmorillonite may exert beneficial therapeutic actions on diarrhea by increasing TFF3 and SOD levels and decreasing NO level.
文摘Objective: To explore the pathogenesis of avascular necrosis of femoral head(ANFH) and search an effective method for clinical practice. Methods: Twenty-four Japanese rabbitswere divided into 2 groups of models and controls. ANFH models were produced byintramuscular-injection of large dosage of steroid to rabbits for 8 weeks. From the 4th, 8th and12th week after production of models, 2 rabbits of each group were sacrificed to observe thestructure of femoral head through light microscope and scanning electron microscope. The contents ofNitric Oxide (NO), tissue-type plasminogen activator (t-PA) and -plasminogen activator inhibitor(PAI) in plasma of the 4 rabbits in each group were estimated at the same time. Results: Comparedwith control group, the rabbits of model group exhibited many differences: such as osteoporosis offemoral head, the presence of more bone lacuna and fat cell through light microscope observing; thebroken and sunk bone trabecula, the loosen and broken collagen fibers on the surface of bone matrixthrough scanning electron microscope observing. Compared with control group, the Concentration ofNO and t-PA in plasma of the model rabbits decreased obviously, but the Concentration of the PAIincreased obviously. Conclusion: The steroid-induced ANFH might be related to the lower level of NOand the descent of fibrinolytic activity.
基金supported by the National Natural Science Foundation of China (21177028)~~国家自然科学基金(21177028)
文摘Recently,a one-pot self-assembly method was proposed for the synthesis of mesoporous Al2O3 and MOx-Al2O3 composite materials.However,few attempts have been made to use mesoporous MOx-Al2O3 composites to support metal oxides for catalysis.In the present work,mesoporous MOx-Al2O3(M = Mn,Fe,Co,Ni,Cu,Ba)materials were prepared by a one-pot self-assembly method using Pluronic P123 as a structure-directing agent.The obtained mesoporous materials were loaded with Rh2O3 nanoparticles via impregnation with Rh(NO3)3 followed by calcination in air at 500°C.The resulting catalysts were characterized by X-ray diffraction,N2 adsorption-desorption measurements,transmission electron microscopy,inductively coupled plasma optical emission spectrometry,X-ray photoelectron spectroscopy,and their catalytic activity and stability for CO oxidation and N2O decomposition were tested.The Rh2O3 nanoparticles were found to be on the order of1 nm in size and were highly dispersed on the high surface area mesoporous MOx-Al2O3 supports.A number of the Rh2O3/mesoporous MOx-Al2O3 catalysts exhibited higher catalytic activity than the Rh2O3/mesoporous Al2O3 prepared for comparison.
基金supported by the National Natural Science Foundation of China (21373259, 21301107)the Hundred Talents Project of the Chinese Academy of Sciences, the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030102)+2 种基金the Open Funding from Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciencesthe Fundamental Research Fund-ing of Shandong University (2014JC005)the Taishan Scholar Project of Shandong Province (China)~~
文摘Nanostructured gold catalyst supported on metal oxide is highly active for the CO oxidation reac‐tion. In this work, a new type of oxide support, zinc tin oxide, has been used to deposit 0.7 wt%Au via a deposition‐precipitation method. The textural properties of Zn2SnO4 support have been tuned by varying the molar ratio between base (N2H4·H2O) and metal ion (Zn2+) to be 4/1, 8/1 and 16/1. The catalytic tests for CO oxidation reaction revealed that the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ = 8/1 was the highest, while the reactivity on Au‐Zn2SnO4 with N2H4·H2O/Zn2+ =16/1 was almost identical to that of the pure support. Both fresh and used catalysts have been characterized by multiple techniques including nitrogen adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, high‐angle annular dark‐field scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray adsorption fine structure, and tempera‐ture‐programmed reduction by hydrogen. These demonstrated that the textural properties, espe‐cially pore volume and pore size distribution, of Zn2SnO4 play crucial roles in the averaged size of gold nanoparticles, and thus determine the catalytic activity of Au‐Zn2SnO4 for CO oxidation.