System identification is an effective way for modeling ship manoeuvring motion and ship manoeuvrability prediction. Support vector machine is proposed to identify the manoeuvring indices in four different response mod...System identification is an effective way for modeling ship manoeuvring motion and ship manoeuvrability prediction. Support vector machine is proposed to identify the manoeuvring indices in four different response models of ship steering motion, including the first order linear, the first order nonlinear, the second order linear and the second order nonlinear models. Predictions of manoeuvres including trained samples by using the identified parameters are compared with the results of free-running model tests. It is discussed that the different four categories are consistent with each other both analytically and numerically. The generalization of the identified model is verified by predicting different untrained manoeuvres. The simulations and comparisons demonstrate the validity of the proposed method.展开更多
基金the Special Research Fund for the Doctoral Program of Higher Education (No. 20050248037)the National Natural Science Foundation of China(No. 50779033)
文摘System identification is an effective way for modeling ship manoeuvring motion and ship manoeuvrability prediction. Support vector machine is proposed to identify the manoeuvring indices in four different response models of ship steering motion, including the first order linear, the first order nonlinear, the second order linear and the second order nonlinear models. Predictions of manoeuvres including trained samples by using the identified parameters are compared with the results of free-running model tests. It is discussed that the different four categories are consistent with each other both analytically and numerically. The generalization of the identified model is verified by predicting different untrained manoeuvres. The simulations and comparisons demonstrate the validity of the proposed method.