A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decou...A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.展开更多
Robust control design is presented for a general class of uncertain non-affine nonlinear systems. The design employs feedback linearization, coupled with two high-gain observers: the first to estimate the feedback lin...Robust control design is presented for a general class of uncertain non-affine nonlinear systems. The design employs feedback linearization, coupled with two high-gain observers: the first to estimate the feedback linearization error based on the full state information and the second to estimate the unmeasured states of the system when only the system output is available for feedback. All the signals in the closed loop are guaranteed to be uniformly ultimately bounded(UUB) and the output of the system is proven to converge to a small neighborhood of the origin. The proposed approach not only handles the difficulty in controlling non-affine nonlinear systems but also simplifies the stability analysis of the closed loop due to its linear control structure. Simulation results show the effectiveness of the approach.展开更多
In this paper,the car-following control problem of nonholonomic autonomous electric vehicles in the curved highway is studied.Owing to the fact that the nonholonomic autonomous electric vehicles have the features of s...In this paper,the car-following control problem of nonholonomic autonomous electric vehicles in the curved highway is studied.Owing to the fact that the nonholonomic autonomous electric vehicles have the features of strong coupling,parametric uncertainties,nonlinearities and external disturbances,a novel integrated adaptive car-following control system is constructed to supervise the longitudinal and lateral motions of vehicles.Firstly,an adaptive fuzzy dynamic surface car-following control strategy is presented to determine a vector of total forces and torque of autonomous electric vehicles,which can guarantee the uniform ultimate boundedness of close-loop control signals.Then,an optimal tire forces distribution law is proposed to dynamically allocate the desired coupled tire longitudinal and lateral forces in real-time.Finally,simulation results illustrate the effectiveness and robustness of the proposed car-following control approach.展开更多
In this paper, a delayed ratio-dependent Holling-III predator-prey system with stagestructured and impulsive stocking on prey and continuous harvesting on predator is considered. The authors obtain sufficient conditio...In this paper, a delayed ratio-dependent Holling-III predator-prey system with stagestructured and impulsive stocking on prey and continuous harvesting on predator is considered. The authors obtain sufficient conditions of the global attractivity of predator-extinction periodic solution and the permanence of the system. These' results show that the behavior of impulsive stocking on prey plays an important role for the permanence of the system. The authors also prove that all solutions of the system are uniformly ultimately bounded. The results show that the biological resource management is effective and reliable. Key words Globally attractivity, impulsive effect, permanence, ratio-dependent, stage-structured.展开更多
In this work, we construct a stage-structured single population system with winter hiber- nation and impulsive effect in polluted environment. All solutions of the investigated system are proved to be uniformly ultima...In this work, we construct a stage-structured single population system with winter hiber- nation and impulsive effect in polluted environment. All solutions of the investigated system are proved to be uniformly ultimately bounded. The conditions of the population- extinction solution of the investigated system are obtained. The permanent condition of the investigated system is also obtained. Finally, numerical analysis is inserted to illustrate the results. Our results indicate that the environmental pollution will reduce biological diversity of the natural world. Our results also provide reliable tactic basis for the practical biological resource management.展开更多
基金Foundation item: Project(2012M521538) supported by China Postdoctoral Science Foundation Project suppolted by Postdoctoral Science Foundation of Central South University
文摘A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.
基金Project(60974047)supported by the National Natural Science Foundation of ChinaProject(S2012010008967)supported by the Natural Science Foundation of Guangdong Province,China+4 种基金Project supported by the Science Fund for Distinguished Young Scholars,ChinaProject supported by 2011 Zhujiang New Star Fund,ChinaProject(121061)supported by FOK Ying Tung Education Foundation of ChinaProject supported by the Ministry of Education for New Century Excellent Talent,ChinaProject(20124420130001)supported by the Doctoral Fund of Ministry of Education of China
文摘Robust control design is presented for a general class of uncertain non-affine nonlinear systems. The design employs feedback linearization, coupled with two high-gain observers: the first to estimate the feedback linearization error based on the full state information and the second to estimate the unmeasured states of the system when only the system output is available for feedback. All the signals in the closed loop are guaranteed to be uniformly ultimately bounded(UUB) and the output of the system is proven to converge to a small neighborhood of the origin. The proposed approach not only handles the difficulty in controlling non-affine nonlinear systems but also simplifies the stability analysis of the closed loop due to its linear control structure. Simulation results show the effectiveness of the approach.
基金supported by the National Natural Science Foundation of China(GrantNos.U1564208&61304193)National Key R&D Program of China(Grant No.2016YFB0100900)the Natural Science Foundation of Fujian Province(Grant No.2017J01100)
文摘In this paper,the car-following control problem of nonholonomic autonomous electric vehicles in the curved highway is studied.Owing to the fact that the nonholonomic autonomous electric vehicles have the features of strong coupling,parametric uncertainties,nonlinearities and external disturbances,a novel integrated adaptive car-following control system is constructed to supervise the longitudinal and lateral motions of vehicles.Firstly,an adaptive fuzzy dynamic surface car-following control strategy is presented to determine a vector of total forces and torque of autonomous electric vehicles,which can guarantee the uniform ultimate boundedness of close-loop control signals.Then,an optimal tire forces distribution law is proposed to dynamically allocate the desired coupled tire longitudinal and lateral forces in real-time.Finally,simulation results illustrate the effectiveness and robustness of the proposed car-following control approach.
文摘In this paper, a delayed ratio-dependent Holling-III predator-prey system with stagestructured and impulsive stocking on prey and continuous harvesting on predator is considered. The authors obtain sufficient conditions of the global attractivity of predator-extinction periodic solution and the permanence of the system. These' results show that the behavior of impulsive stocking on prey plays an important role for the permanence of the system. The authors also prove that all solutions of the system are uniformly ultimately bounded. The results show that the biological resource management is effective and reliable. Key words Globally attractivity, impulsive effect, permanence, ratio-dependent, stage-structured.
基金Acknowledgments The work of the first author was supported by National Natural Science Foundation of China (No. 11361014) and the project of high level creative talents in Guizhou Province (No. 20164035). This research was supported by National Natural Science Foundation of China (Nos. 11361014, 10961008), the Science Technology Foundation of Guizhou Education Department (No. 2008038), and the Science Technology Foundation of Guizhou (No. 2010J2130).
文摘In this work, we construct a stage-structured single population system with winter hiber- nation and impulsive effect in polluted environment. All solutions of the investigated system are proved to be uniformly ultimately bounded. The conditions of the population- extinction solution of the investigated system are obtained. The permanent condition of the investigated system is also obtained. Finally, numerical analysis is inserted to illustrate the results. Our results indicate that the environmental pollution will reduce biological diversity of the natural world. Our results also provide reliable tactic basis for the practical biological resource management.