期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一维函数方法求解原子和分子薛定谔方程
1
作者 SARWONO Yanoar Pribadi UR RAHMAN Faiz +1 位作者 赵润东 张瑞勤 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2021年第7期2286-2298,共13页
对薛定谔方程的严格数值求解,尤其是发展标准方法之外的、包含新功能的解法,一直是物理学研究的基本关注点.本文介绍一种近些年发展的一维函数近似解方法,该方法通过对波函数的不同坐标分量进行处理来求解原子和分子体系的薛定谔方程.... 对薛定谔方程的严格数值求解,尤其是发展标准方法之外的、包含新功能的解法,一直是物理学研究的基本关注点.本文介绍一种近些年发展的一维函数近似解方法,该方法通过对波函数的不同坐标分量进行处理来求解原子和分子体系的薛定谔方程.电子的试探波函数被离散化到实空间均匀格点上,因此可以通过残差矢量校正的方法对其进行改进.一维函数方法本身的特征决定其非常利于数值积分,避免了很多由常规的多电子、多中心势分子积分所带来的问题.计算中,最终能量是从严格的能量上限逐渐收敛所获得,计算出的两电子薛定谔波函数呈现出常规单电子近似方法所含有的电子关联效应.不同于密度泛函理论及Hartree-Fock的单电子解法,本方法对电子-电子排斥能的多体效应的处理更加精确. 展开更多
关键词 薛定谔方程的数值解 一维函数法 氢原子 氦原子及其等电子离子 氢分子及氢离子
下载PDF
Envelope Periodic Solutions to One-Dimensional Gross-Pitaevskii Equation in Bose-Einstein Condensation
2
作者 LIU Shi-Kuo GAO Bin +1 位作者 FU Zun-Tao LIU Shi-Da 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第6期1069-1072,共4页
In this paper, applying the dependent and independent variables transformations as well as the Jacobi elliptic function expansion method, the envelope periodic solutions to one-dimensional Gross-Pitaevskii equation in... In this paper, applying the dependent and independent variables transformations as well as the Jacobi elliptic function expansion method, the envelope periodic solutions to one-dimensional Gross-Pitaevskii equation in Bose-Einstein condensates are obtained. 展开更多
关键词 Gross-Pitaevskii equation TRANSFORMATIONS Jacobi elliptic function expansion method
下载PDF
Magnetic Properties of One-Dimensional Ferromagnetic Mixed-Spin Model within Tyablikov Decoupling Approximation
3
作者 陈渊 项颖 宋闯闯 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第10期747-752,共6页
In this paper, we apply the two-time Green's function method, and provide a simple way to study themagnetic properties of one-dimensional spin-(S, s) Heisenberg ferromagnets.The magnetic susceptibility and correla... In this paper, we apply the two-time Green's function method, and provide a simple way to study themagnetic properties of one-dimensional spin-(S, s) Heisenberg ferromagnets.The magnetic susceptibility and correlationfunctions are obtained by using the Tyablikov decoupling approximation.Our results show that the magnetic susceptibilityand correlation length are a monotonically decreasing function of temperature regardless of the mixed spins.It isfound that in the case of S = s, our results of one-dimensional mixed-spin model is reduced to be those of the isotropicferromagnetic Heisenberg chain in the whole temperature region.Our results for the susceptibility are in agreement withthose obtained by other theoretical approaches. 展开更多
关键词 magnetic property Green's function method mixed-spin model Tyablikov decoupling approximation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部