One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their diverse current and futur...One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their diverse current and future technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and the corresponding growth mechanisms, various nanostructures grown, their doping and alloying, and position-controlled growth on substrates. Finally, we will review their functional properties in catalysis, hydrophobic surface modification, sensing, and electronic, optical, optoelectronic, and energy harvesting devices.展开更多
Iron oxides, including α-Fe2O3, γ-Fe2O3, Fe3O4, etc. are one of the most widely investigated materials for their fundamental properties and potential applications. One-dimensional (1-D) iron oxides nanostructures ...Iron oxides, including α-Fe2O3, γ-Fe2O3, Fe3O4, etc. are one of the most widely investigated materials for their fundamental properties and potential applications. One-dimensional (1-D) iron oxides nanostructures are the focus of recent research activi- ties because of their wide applications in magnetic refrigeration, information storage, electronics, catalysts, Li-ion battery, pigment, gas sensors, etc. This review covers the recent progress in the synthesis, properties and applications of 1-D iron oxides nanostructures. The paper begins with the introduction to 1-D iron oxides nanostructures, followed by the typical synthetic methods developed for the synthesis of 1-D iron oxides nanostructures. Then, the typical 1-D iron oxides nanostructures, in- cluding nanowires/nanorods, nanotubes, nanobelts, nanochalns, and special 3-D structures built on 1-D building blocks, are introduced in detail. The properties of 1-D iron oxides nanostructures are then discussed, focusing on the magnetic, gas sensing, and electrochemical and photocatalytic properties. Finally, we draw conclusions and look at the prospects of 1-D iron oxides nanostructures.展开更多
Periodic composites with band gaps that prevent the propagation of elastic waves in certain frequency ranges can be used to control waves for a variety of engineering applications. Although studies on the characterist...Periodic composites with band gaps that prevent the propagation of elastic waves in certain frequency ranges can be used to control waves for a variety of engineering applications. Although studies on the characteristics of these materials, which are called phononic crystals (PCs), have yielded a large number of positive results in recent years, there is still a lack of effective design methods. In this work, a multi-objective optimization approach based on the band gap mechanism and an intelligent algorithm is used to design a one-dimensional (1D) slab construction of PCs. The design aims to fit pre-determined bands by arranging the available materials properly. Obtained by analyzing the wave transmission in periodic layers, the objective functions are linked to the optimization program to obtain a proper solution set. The results of the numerical simulations demonstrate that without constructing complicated structures, the design method is able to produce PCs that overcome the limitations of two-component PCs and hence can feasibly and effectively achieve the design targets. The design approach presented in this paper can be extended to two-or three-dimensional systems and has great potential for the development of sound/ultrasound isolation structures, multiple band frequency filters, and other applications.展开更多
文摘One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their diverse current and future technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and the corresponding growth mechanisms, various nanostructures grown, their doping and alloying, and position-controlled growth on substrates. Finally, we will review their functional properties in catalysis, hydrophobic surface modification, sensing, and electronic, optical, optoelectronic, and energy harvesting devices.
基金supported by the National Natural Science Foundation of China (Grant No. 51002059)the National Basic Research Program of China (Grant No. 2011CBA00700)+2 种基金the Natural Science Foundation of Hubei Province (Grant No. 2009CDB326)the Research Fund for the Doctoral Program of Higher Education (Grant Nos. 20090142120059, 20100142120053)the Director Fund of WNLO. Special thanks to the Analysis and Testing Center of HUST
文摘Iron oxides, including α-Fe2O3, γ-Fe2O3, Fe3O4, etc. are one of the most widely investigated materials for their fundamental properties and potential applications. One-dimensional (1-D) iron oxides nanostructures are the focus of recent research activi- ties because of their wide applications in magnetic refrigeration, information storage, electronics, catalysts, Li-ion battery, pigment, gas sensors, etc. This review covers the recent progress in the synthesis, properties and applications of 1-D iron oxides nanostructures. The paper begins with the introduction to 1-D iron oxides nanostructures, followed by the typical synthetic methods developed for the synthesis of 1-D iron oxides nanostructures. Then, the typical 1-D iron oxides nanostructures, in- cluding nanowires/nanorods, nanotubes, nanobelts, nanochalns, and special 3-D structures built on 1-D building blocks, are introduced in detail. The properties of 1-D iron oxides nanostructures are then discussed, focusing on the magnetic, gas sensing, and electrochemical and photocatalytic properties. Finally, we draw conclusions and look at the prospects of 1-D iron oxides nanostructures.
基金supported by the National Natural Science Foundation of China(Grant Nos. 51179171 and 51079127)
文摘Periodic composites with band gaps that prevent the propagation of elastic waves in certain frequency ranges can be used to control waves for a variety of engineering applications. Although studies on the characteristics of these materials, which are called phononic crystals (PCs), have yielded a large number of positive results in recent years, there is still a lack of effective design methods. In this work, a multi-objective optimization approach based on the band gap mechanism and an intelligent algorithm is used to design a one-dimensional (1D) slab construction of PCs. The design aims to fit pre-determined bands by arranging the available materials properly. Obtained by analyzing the wave transmission in periodic layers, the objective functions are linked to the optimization program to obtain a proper solution set. The results of the numerical simulations demonstrate that without constructing complicated structures, the design method is able to produce PCs that overcome the limitations of two-component PCs and hence can feasibly and effectively achieve the design targets. The design approach presented in this paper can be extended to two-or three-dimensional systems and has great potential for the development of sound/ultrasound isolation structures, multiple band frequency filters, and other applications.