期刊文献+
共找到1,339篇文章
< 1 2 67 >
每页显示 20 50 100
基于同步辐射X射线荧光光谱与一维卷积神经网络的癌症筛查方法 被引量:2
1
作者 魏超杰 李超 +5 位作者 解宏鑫 王欣 李玉锋 李玉文 刘杨 王伟 《中国无机分析化学》 CAS 北大核心 2024年第1期104-111,共8页
癌症是全球范围内引起高发病率与高死亡率的疾病之一。现有癌症检测方法耗时、昂贵、专业人员依赖性强,开发一种无损、快速筛查方法非常重要。在前期工作基础上,发展了基于同步辐射X射线荧光光谱技术(SRXRF)与深度学习技术结合的一种非... 癌症是全球范围内引起高发病率与高死亡率的疾病之一。现有癌症检测方法耗时、昂贵、专业人员依赖性强,开发一种无损、快速筛查方法非常重要。在前期工作基础上,发展了基于同步辐射X射线荧光光谱技术(SRXRF)与深度学习技术结合的一种非靶标金属组学方法筛查癌症患者。首先,分析控制组与癌症组共269份血清样本的SRXRF谱线,得到Ca、Mn、Zn、Ge、Br在两类人群中具有代表性差异,可以作为癌症筛查的标志物;其次,对于平均光谱进行归一化(Normalization)、迭代自适应加权惩罚最小二乘法(airPLS)、Savitzky-Golay平滑(SG)、标准正态变换(SNV)的预处理,并建立偏最小二乘判别分析(PLSDA)、K近邻法(KNN)、软独立建模分类法(SIMCA)的化学计量学模型,三种模型对癌症筛查的最优准确率分别为89.89%、93.26%、90.95%;最后,基于像素级光谱,搭建三种一维卷积神经网络(1DCNN)模型,三种模型准确率分别为93.56%、95.24%、93.27%,相对于化学计量学模型均有所提高,增加卷积层的数量有助于数据特征提取,模型准确率提高了1.68%。将三种模型卷积层提取获得的特征进行t-分布随机邻域嵌入算法(tSNE)降维可视化,得到1DCNN提取的特征具有显著可分性,SRXRF结合1DCNN模型开发的非靶标金属组学方法在实现癌症的快速筛查方面具有潜力。 展开更多
关键词 癌症筛查 血清 X射线荧光光谱 一维卷积神经网络 非靶标金属组学
下载PDF
基于近红外光谱数据的一维卷积神经网络模型研究
2
作者 唐杰 罗彦波 +6 位作者 李翔宇 陈云璨 王鹏 卢天 纪晓波 庞永强 朱立军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期731-736,共6页
近红外光谱技术已被广泛应用于各种检测行业,但传统方法难以汇集光谱关键信息,导致模型预测误差较大。为减少误差,基于452个茄科植物,以化学成分为目标,探索了一维卷积神经网络(1DCNN)在近红外数据上的回归模型研究。经参数优化,总结了... 近红外光谱技术已被广泛应用于各种检测行业,但传统方法难以汇集光谱关键信息,导致模型预测误差较大。为减少误差,基于452个茄科植物,以化学成分为目标,探索了一维卷积神经网络(1DCNN)在近红外数据上的回归模型研究。经参数优化,总结了一套兼顾精度与训练效率的1DCNN模型参数,为后续模型研究提供参考。模型测试集的均方根误差为0.02~0.49,平均相对误差为0.8%~1.7%,远小于历史文献。相比传统方法,1DCNN可充分利用全部近红外谱图数据,且建模简单,模型预测能力强。该工作能为近红外光谱相关研究提供新的数据处理思路,也能促进该技术的应用与发展。 展开更多
关键词 一维卷积神经网络 近红外光谱 深度学习
下载PDF
基于一维卷积和图神经网络的配电网故障区段定位方法
3
作者 何小龙 高红均 +3 位作者 黄媛 高艺文 王仁浚 刘俊勇 《电力系统保护与控制》 EI CSCD 北大核心 2024年第17期27-39,共13页
快速、准确地定位故障区段对配电网的安全运行至关重要。传统故障定位方法容错率低、耗费时间长,多数深度学习算法对拓扑变动的泛化性不足。基于此,提出了一种基于一维卷积神经网络(one-dimensional convolutional neural network,1D-C... 快速、准确地定位故障区段对配电网的安全运行至关重要。传统故障定位方法容错率低、耗费时间长,多数深度学习算法对拓扑变动的泛化性不足。基于此,提出了一种基于一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)和图神经网络(graph neural network,GNN)的配电网故障区段定位方法。该方法将配电网原始信息与GNN等深度学习算法相结合进行建模。首先利用基于注意力的时空图卷积网络从不同的时空尺度上对遥测数据进行故障特征提取,使用图注意力网络来融合多源遥信数据。然后,利用1D-CNN来调整特征输出维度以实现节点特征到故障支路的映射。最后,通过增设全连接网络来输出故障区段定位结果。依托于Matlab/Simulink平台搭建10 kV中性点不接地配电网系统进行仿真和测试。结果表明,所提方法具有优越的定位性能,能够灵活适用于各类低、中、高阻性接地故障场景,对系统拓扑变动具有强大的泛化能力以及对故障数据不完备的鲁棒性好。 展开更多
关键词 配电网 故障区段定位 一维卷积 神经网络 拓扑变动 数据不完备
下载PDF
一维卷积神经网络的自编码癫痫发作异常检测模型
4
作者 欧嘉志 詹长安 杨丰 《南方医科大学学报》 CAS CSCD 北大核心 2024年第9期1796-1804,共9页
目的将一维卷积神经网络(1DCNN)作为自编码模型的特征提取网络,利用1DCNN对头皮脑电信号(EEG)局部特征的感知能力来提高自编码模型(AE)在低维特征空间的表达能力,提出一种简单高效的癫痫异常检测模型。方法癫痫发作后会出现标志性的EEG... 目的将一维卷积神经网络(1DCNN)作为自编码模型的特征提取网络,利用1DCNN对头皮脑电信号(EEG)局部特征的感知能力来提高自编码模型(AE)在低维特征空间的表达能力,提出一种简单高效的癫痫异常检测模型。方法癫痫发作后会出现标志性的EEG波形变化,通过1DCNN的局部特征提取能力,捕捉正常信号的局部信息;利用正常数据训练自编码器,学习正常EEG数据在低维特征空间的表达,作为异常数据的癫痫EEG数据会脱离正常数据的低维特征空间,从而自编码模型无法有效地实现癫痫异常信号的重构;首先将输入和输出的差值作为异常分数值,然后通过ROC曲线的最优平衡点确定阈值,超过阈值的EEG信号被诊断为癫痫发作数据。利用公开数据集CHB-MIT脑电数据集和TUH脑电数据集,评估本文所提出的1DCNN-AE癫痫检测模型。结果从AUC值和癫痫事件检测两个任务来看,1DCNN-AE模型在患者平均水平下的AUC值分别达到了CHB-MIT的0.890和TUH的0.686,癫痫检测率达到了0.974和0.893,其结果优于最新癫痫异常检测模型LSTM-VAE和模型GRU-VAE。对于模型参数量而言,与LSTM-VAE的47.4M和GRU-VAE的36.9M等模型参数量相比,1DCNN模型的参数量Params达到了58.5M,处于同一个量级;但1DCNN-AE模型计算量FLOPs为0.377G,远远小于LSTM-VAE的21.6G和GRU-VAE的16.2G。结论1DCNN的自编码模型能有效地实现癫痫发作异常检测。 展开更多
关键词 自编码器 深度学习 癫痫检测 异常检测 一维卷积神经网络
下载PDF
基于改进激活函数的一维卷积神经网络电机轴承故障诊断的研究
5
作者 任大卫 周舒昊 +1 位作者 伦淑娴 李明 《渤海大学学报(自然科学版)》 CAS 2024年第1期74-80,共7页
提出了一种基于改进激活函数的一维卷积神经网络的电机轴承故障诊断的方法,该方法首先介绍了一维卷积神经网络的结构,然后详细说明了激活函数的改进点,最后通过仿真试验依次采用三种一维卷积神经网络对电机轴承故障进行分类,通过对比发... 提出了一种基于改进激活函数的一维卷积神经网络的电机轴承故障诊断的方法,该方法首先介绍了一维卷积神经网络的结构,然后详细说明了激活函数的改进点,最后通过仿真试验依次采用三种一维卷积神经网络对电机轴承故障进行分类,通过对比发现,此方法具有诊断准确率高、收敛速度快、无需人为提取故障特征等优点。 展开更多
关键词 激活函数 一维卷积神经网络 电机轴承故障诊断
下载PDF
一种基于一维卷积神经网络的试井模型智能识别方法
6
作者 齐占奎 张新鹏 +2 位作者 刘旭亮 查文舒 李道伦 《油气井测试》 2024年第2期72-78,共7页
为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经... 为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经网络模型,将样本库中双对数曲线的压力变化和压力导数数据作为输入,油藏类别作为网络输出训练及优化网络,总识别准确率可达99.16%,敏感度均在98%以上。经4口井实例应用,正确识别试井模型的概率大于0.99,与二维卷积神经网络相比,1D CNN显著降低了计算复杂度和时间成本,加快了训练速度。这表明基于试井理论所构建的样本库是有效的,能满足实测数据模型识别的需求;同时证明了方法的有效性、实用性和普适性。 展开更多
关键词 试井模型 一维卷积神经网络 智能识别 深度学习 自动解释 模型识别 样本库
下载PDF
基于CNN-LSTM-AM神经网络的多维长序列物流需求预测
7
作者 朱毅丁 张云川 +1 位作者 马云峰 周志刚 《物流科技》 2024年第18期49-56,64,共9页
物流需求预测是物流管理中的关键环节,但是在现实生活中,物流需求可能受到诸如天气、经济状况、特殊事件等多方面因素的影响,这使得问题呈现出多维度、长序列的特征。随着深度学习和神经网络的发展,越来越多的研究开始尝试使用神经网络... 物流需求预测是物流管理中的关键环节,但是在现实生活中,物流需求可能受到诸如天气、经济状况、特殊事件等多方面因素的影响,这使得问题呈现出多维度、长序列的特征。随着深度学习和神经网络的发展,越来越多的研究开始尝试使用神经网络模型进行物流需求预测,但是单一的神经网络模型在处理多维度、长时间序列的预测任务时常常表现欠佳。由此文章提出了一种基于CNN-LSTM-AM的神经网络模型,用于多维长序列物流需求预测。通过消融实验与其他模型的对比,结果表明,其平均绝对误差(MAE)、均方根误差(RMSE)、决定系数(R2)均值分别为1.56、1.63和0.981,均优于其他6种神经网络模型,为物流企业提供了一个有效的参考来更好地规划资源和降低成本。 展开更多
关键词 物流需求预测 长时间序列 LSTM(长短时记忆)网络 cnn(卷积神经网络) 注意力机制
下载PDF
基于多尺度一维卷积神经网络的弯管冲蚀损伤智能检测方法
8
作者 陈传智 李宁 +2 位作者 王畅 陈家梁 罗锦达 《科学技术与工程》 北大核心 2024年第5期1893-1899,共7页
针对高压管汇损伤需要提高检测效率和准确率的问题,提出一种基于多尺度一维卷积神经网络(multi-scale one-dimensional convolutional neural network,MS-1DCNN)的弯管冲蚀损伤智能检测新方法,即用多尺度卷积层代替传统的单一尺度卷积... 针对高压管汇损伤需要提高检测效率和准确率的问题,提出一种基于多尺度一维卷积神经网络(multi-scale one-dimensional convolutional neural network,MS-1DCNN)的弯管冲蚀损伤智能检测新方法,即用多尺度卷积层代替传统的单一尺度卷积层。在MS-1DCNN模型中,把通过模拟实验所得弯管冲蚀损伤原始时域信号作为多尺度一维卷积神经网络的输入,这样能解决传统方法依赖人工提取特征和专家知识的问题;然后,通过多尺度卷积层和池化层的交替连接对输入信号进行特征提取;最后,经由输出层输出弯管冲蚀损伤分类结果。模型试验结果表明:基于MS-1DCNN弯管冲蚀损伤检测方法可以有效检测出弯管冲蚀损伤,且平均检测准确率达到99.18%。研究可为高压管汇冲蚀损伤智能检测提供一种新思路。 展开更多
关键词 高压管汇 冲蚀损伤 一维卷积神经网络 多尺度 智能检测
下载PDF
低过采样数字调制信号的多尺度一维卷积神经网络解调器
9
作者 陈显敏 符杰林 《计算机应用与软件》 北大核心 2024年第5期113-117,共5页
针对应用深度学习方法对数字调制信号进行解调时过采样要求较高的问题,设计低过采样的多尺度一维卷积神经网络数字解调器。该解调器可以在与传统解调器相同的过采样条件下,对BPSK、4-QAM、8-QAM、16-QAM四种数字调制信号进行解调,并能... 针对应用深度学习方法对数字调制信号进行解调时过采样要求较高的问题,设计低过采样的多尺度一维卷积神经网络数字解调器。该解调器可以在与传统解调器相同的过采样条件下,对BPSK、4-QAM、8-QAM、16-QAM四种数字调制信号进行解调,并能保证传统解调方法相同的误码性能。仿真结果表明,在高斯和Rayleigh衰落信道下,给出的数字调制信号解调器可以在保证解调误码性能的同时,减少了对采样倍数的要求,降低了神经网络结构的复杂性。 展开更多
关键词 低采样倍数 解调 多尺度一维卷积神经网络 BPSK和M-QAM
下载PDF
基于SVM-SMOTE算法的一维卷积神经网络电力系统暂态稳定评估模型
10
作者 袁梦薇 何宇 王旭 《智能计算机与应用》 2024年第7期50-56,共7页
为了提高电力系统运行稳定性,降低大停电事故发生的概率,本文提出了一种基于SVM-SMOTE算法的一维卷积神经网络暂态稳定评估模型。为了避免人工特征选择引入的主观偏差对模型预测性能的影响,本文选择来自PMU的底层量测数据作为输入特征,... 为了提高电力系统运行稳定性,降低大停电事故发生的概率,本文提出了一种基于SVM-SMOTE算法的一维卷积神经网络暂态稳定评估模型。为了避免人工特征选择引入的主观偏差对模型预测性能的影响,本文选择来自PMU的底层量测数据作为输入特征,并采用一维卷积神经网络(1D-CNN)捕捉输入特征的时序信息;考虑数据集样本不平衡带来的预测精度下降问题,采用SVM-SMOTE算法对样本进行均衡化。算例仿真结果表明,本文所提出的模型实现了端到端的时序特征提取和暂态稳定评估,可满足在线评估准确性、快速性和可靠性的要求,且有效解决了不平衡数据集中失稳样本漏判率高的问题。 展开更多
关键词 电力系统 暂态稳定评估 SVM-SMOTE算法 一维卷积神经网络
下载PDF
基于卷积神经网络的三维表面分形维数识别
11
作者 汪刘群 雷声 王子杰 《润滑与密封》 CAS CSCD 北大核心 2024年第10期108-116,共9页
分形维数作为机械加工表面形貌的重要参数,可用于接触表面的摩擦特性分析。然而,现有的分形维数计算方法大多需要选择多组尺度计算相应的测度,这不仅影响分形维数的计算速度和精度,也增加了计算的复杂度。针对机加工表面的三维分形维数... 分形维数作为机械加工表面形貌的重要参数,可用于接触表面的摩擦特性分析。然而,现有的分形维数计算方法大多需要选择多组尺度计算相应的测度,这不仅影响分形维数的计算速度和精度,也增加了计算的复杂度。针对机加工表面的三维分形维数测量问题,提出一种基于卷积神经网络的分形维数的识别方法。采用Weierstrass-Mandelbrot分形函数构建一个包含不同分形维数的三维粗糙表面数据集,利用单因素实验法分析网络参数(网络深度、滤波器大小、滤波器数量)对三维分形维数识别精度的影响,以找到最优的神经网络参数组合。通过与差分盒维数法、三角棱镜表面积法和分形布朗运动法3种方法进行对比,验证卷积神经网络法识别三维分形维数的有效性。实验结果表明:基于卷积神经网络方法计算的分形维数平均绝对百分比误差可控制在1.5%以下;该方法在分形维数全动态范围内都表现出较小的误差,可用于计算三维表面轮廓分形维数。 展开更多
关键词 分形 卷积神经网络 W-M函数 深度学习 接触表面
下载PDF
循环相关熵和一维浅卷积神经网络轴承故障诊断
12
作者 李辉 徐伟烝 《机械科学与技术》 CSCD 北大核心 2024年第4期600-610,共11页
针对传统二维深度卷积神经网络结构复杂、易产生过拟合和难以有效处理低信噪比信号的问题,提出了一种基于循环相关熵和一维浅卷积神经网络的故障诊断-CCe-1D SCNN方法。该方法综合利用了一维浅卷积神经网络结构简单、计算复杂度低和循... 针对传统二维深度卷积神经网络结构复杂、易产生过拟合和难以有效处理低信噪比信号的问题,提出了一种基于循环相关熵和一维浅卷积神经网络的故障诊断-CCe-1D SCNN方法。该方法综合利用了一维浅卷积神经网络结构简单、计算复杂度低和循环相关熵能在低信噪比环境下有效提取故障特征的优点。首先,计算轴承故障振动信号的循环相关熵函数、循环相关熵谱密度函数和广义循环平稳度;其次,将一维归一化的广义循环平稳度作为一维浅卷积神经网络的输入层,通过一维浅卷积神经网络自动实现故障特征提取和模式分类;最后,将CCe-1D SCNN方法应用于电机轴承故障特征提取和分类,实验结果表明:CCe-1D SCNN方法在低噪声比情况下仍能保持很高的模式识别正确率,为一种自动故障特征提取和模式识别的有效方法。 展开更多
关键词 循环相关熵 一维卷积神经网络 深度学习 循环平稳信号 故障诊断
下载PDF
基于一维卷积神经网络的粉煤灰混凝土氯离子质量分数预测
13
作者 章玉容 余威龙 +1 位作者 王龙龙 唐科 《浙江工业大学学报》 CAS 北大核心 2024年第2期156-163,共8页
为研究深度学习方法在氯离子质量分数预测中的应用,基于自然潮差环境下粉煤灰混凝土长期暴露试验获取了3150组自由氯离子质量分数数据,建立一维卷积神经网络(One-dimensional convolutional neural network,1D-CNN)模型用于预测粉煤灰... 为研究深度学习方法在氯离子质量分数预测中的应用,基于自然潮差环境下粉煤灰混凝土长期暴露试验获取了3150组自由氯离子质量分数数据,建立一维卷积神经网络(One-dimensional convolutional neural network,1D-CNN)模型用于预测粉煤灰混凝土氯离子质量分数。该模型分析了核函数和卷积层对1D-CNN预测精度的影响,研究了水灰比、暴露时间、粉煤灰掺量和渗透深度4个输入参数对粉煤灰混凝土自由氯离子质量分数预测结果的影响。实验结果表明:采用12个3×1卷积核及两层卷积层构建1D-CNN模型时,自由氯离子质量分数的预测结果最优;同时,应用最优的1D-CNN模型开展基于未测参数的自由氯离子质量分数预测,预测结果较为准确。因此,1D-CNN模型具有精度高和适用范围广泛的特点,能够为氯盐环境下混凝土中自由氯离子质量分数预测提供新的方法。 展开更多
关键词 自由氯离子质量分数 一维卷积神经网络 粉煤灰混凝土
下载PDF
基于连续小波卷积神经网络的轴承智能故障诊断方法
14
作者 耿志强 陈威 +1 位作者 马波 韩永明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第10期2069-2075,共7页
传统故障诊断方法存在特征提取有限和故障检测不准确的问题,为此提出新的轴承智能故障诊断方法.构建连续小波卷积层取代卷积神经网络(CNN)中的初始卷积层,用于提取轴承数据的初级特征;使用增强ACON激活函数处理提取的振动信号;设计新的... 传统故障诊断方法存在特征提取有限和故障检测不准确的问题,为此提出新的轴承智能故障诊断方法.构建连续小波卷积层取代卷积神经网络(CNN)中的初始卷积层,用于提取轴承数据的初级特征;使用增强ACON激活函数处理提取的振动信号;设计新的计算空间,提高CNN的整体自适应性.在凯斯西储大学轴承数据集上开展滚动轴承故障诊断方法对比实验.结果表明,与传统基于CNN、快速傅里叶变换-CNN、长短时记忆CNN故障诊断方法相比,所提方法的故障诊断精度分别提高了7.45、4.46和1.53个百分点,CNN的收敛速度更快.在不同工况的泛化任务中,所提方法的平均准确率为99.64%,准确性和泛化能力良好. 展开更多
关键词 卷积神经网络(cnn) 连续小波 自适应激活函数 轴承 故障诊断
下载PDF
基于改进一维卷积神经网络的滚动轴承故障诊断方法
15
作者 任德珍 张清华 《河南科技》 2024年第10期20-26,共7页
【目的】为解决传统一维卷积神经网络模型在进行轴承故障诊断时出现过拟合和泛化能力弱的问题,提出了基于改进一维卷积神经网络(1DCNN)的滚动轴承故障诊断方法。【方法】首先,利用全局均值池化层代替传统一维卷积神经网络的全连接层,以... 【目的】为解决传统一维卷积神经网络模型在进行轴承故障诊断时出现过拟合和泛化能力弱的问题,提出了基于改进一维卷积神经网络(1DCNN)的滚动轴承故障诊断方法。【方法】首先,利用全局均值池化层代替传统一维卷积神经网络的全连接层,以减少模型中的参数数量、降低模型复杂度,从而提高卷积神经网络的泛化能力;其次,结合Dropout正则化方法,解决模型过拟合问题;最后,由Softmax分类函数进行分类。【结果】利用凯斯西储大学轴承故障数据集进行验证,结果表明,改进后的1DCNN在进行故障诊断时可以利用相对较少的训练次数就达到较高的准确率和较好的拟合效果,且故障准确率为99.42%。【结论】该方法明显优于传统一维卷积神经网络所呈现的故障诊断效果,对解决实际轴承故障问题具有重要的理论意义和应用价值。 展开更多
关键词 滚动轴承 一维卷积神经网络 故障诊断
下载PDF
基于一维卷积神经网络构建医用直线加速器高价值零件故障预测模型的应用效果
16
作者 傅世楣 《医疗装备》 2024年第14期25-27,共3页
目的构建医用直线加速器高价值零件故障预测模型,以实现对高价值零件故障的预判。方法选取2013年1月至2017年12月医院在用医科达Synergy医用直线加速器的60组共381个维修记录数据,按照7:3比例随机分配为训练集(42组)和测试集(18组),采... 目的构建医用直线加速器高价值零件故障预测模型,以实现对高价值零件故障的预判。方法选取2013年1月至2017年12月医院在用医科达Synergy医用直线加速器的60组共381个维修记录数据,按照7:3比例随机分配为训练集(42组)和测试集(18组),采用一维卷积神经网络进行二分类建模,随机选取30组数据作为验证集评估模型性能,并采用测试集数据检测模型预测效果。结果设定最大训练学习次数为120次,实际训练次数超过80次时数据趋于稳定,训练集和验证集的准确率均稳定于90%左右,测试集数据准确率均在96%以上,表明模型收敛较好。结论该模型预测医用直线加速器高价值零件的故障次数与实际情况接近,为预防性维修和保修服务采购提供了可靠的数据支持。 展开更多
关键词 一维卷积神经网络 医用直线加速器 高价值零件 故障预测模型
下载PDF
基于片上系统的可配置卷积神经网络加速器的设计与实现
17
作者 张立国 杨红光 +1 位作者 金梅 申前 《高技术通讯》 CAS 北大核心 2024年第7期744-754,共11页
针对现阶段卷积神经网络(CNN)加速器的设计只能部署在单一现场可编程门阵列(FPGA)平台、不支持硬件平台升级迭代的问题,设计了一种基于片上系统(SoC)的可配置CNN加速器。该加速器具备以下2个特点:(1)在电路设计中将数据位宽、中间缓存... 针对现阶段卷积神经网络(CNN)加速器的设计只能部署在单一现场可编程门阵列(FPGA)平台、不支持硬件平台升级迭代的问题,设计了一种基于片上系统(SoC)的可配置CNN加速器。该加速器具备以下2个特点:(1)在电路设计中将数据位宽、中间缓存空间大小、乘法器阵列(MAC)并行度作为一种可选配置参数,通过调整资源使用量,使得该加速器能够适配不同FPGA硬件;(2)提出了动态数据复用的策略,通过对比数据传输过程中不同复用方式下的总参数量差异,动态地选择复用方法,以减少数据传输的等待时间,提高乘法器阵列利用率。该方案在ZCU104板卡上进行了实验,实验结果表明,当数据位宽选择8、乘法器阵列并行度选择1024、核心运算模块工作在180 MHz时,卷积运算阵列峰值吞吐量为180 GOPs,功耗为3.75 W,能效比达到47.97 GOPs·W^(-1),对于VGG16网络,其卷积层的平均乘法器阵列利用率达到84.37%。 展开更多
关键词 卷积神经网络(cnn) 现场可编程门阵列(FPGA) cnn加速器 可配置 异构加速
下载PDF
基于卷积神经网络与Transformer的电能质量扰动分类方法
18
作者 金星 周凯翔 +2 位作者 于海洲 王盛慧 伍孟海 《科学技术与工程》 北大核心 2024年第16期6726-6733,共8页
复杂电能质量扰动(power quality disturbances, PQD)的智能分类对于智能电网发展具有重要意义。扰动特征的提取与定位、模式识别与分类是电能质量扰动分类方法研究的难点。采用深度学习算法,将具有关注全局信息的Transformer与善于提... 复杂电能质量扰动(power quality disturbances, PQD)的智能分类对于智能电网发展具有重要意义。扰动特征的提取与定位、模式识别与分类是电能质量扰动分类方法研究的难点。采用深度学习算法,将具有关注全局信息的Transformer与善于提取局部特征的卷积神经网络相融合,提出一种基于卷积神经网络(convolutional neural network, CNN)与Transformer的电能质量扰动分类方法,即CTranCBA。这种双深度学习模型分类方法主要是通过一维卷积神经网络提取电能质量扰动信号特征,利用Transformer自注意力机制引导模型关注序列中不同位置间的依赖关系,实现对扰动信号局部特征与全局特征的互补,克服了因感受野的限制而带来的识别不清、分类不准等问题。使用23种不同电能质量扰动信号,将CTranCBA与Deep-CNN、CNN-LSTM、CNN-CBAM方法进行比较。结果表明:该方法在分类准确率和抗噪性方面表现优异,可为电能质量扰动智能分类提供一种新的方法。 展开更多
关键词 电能质量扰动(PQD) 卷积神经网络(cnn) Transformer模型 卷积注意力机制
下载PDF
基于改进一维卷积神经网络的轴承故障诊断
19
作者 田娟 吴轲 《机械工程与自动化》 2024年第5期158-159,162,共3页
为了保障机械设备的安全稳定运行,提出了一种采用大卷积核和弱池化结构的一维卷积神经网络故障诊断模型。首先,设计大卷积核,提高模型对全局特征的敏感度,同时简化池化结构,进一步增强模型对局部特征的抽象能力;然后,嵌入批量归一化处... 为了保障机械设备的安全稳定运行,提出了一种采用大卷积核和弱池化结构的一维卷积神经网络故障诊断模型。首先,设计大卷积核,提高模型对全局特征的敏感度,同时简化池化结构,进一步增强模型对局部特征的抽象能力;然后,嵌入批量归一化处理策略,实现故障位置及故障程度的准确识别;最后,应用凯斯西储大学的轴承公开数据集进行模型验证。实验结果显示该模型具有优秀的特征提取能力和分类精度。 展开更多
关键词 轴承 故障诊断 一维卷积神经网络 卷积 弱池化
下载PDF
基于一维卷积神经网络的轴承故障诊断
20
作者 徐畅 《信息产业报道》 2024年第4期60-62,共3页
本文利用了西储轴承数据集,主要探索基于一维卷积神经网络的故障诊断。首先建立了作用在时域信号上的轴承故障诊断 CNN,然后实现了第一层宽卷积核深度卷积神经网络,最后给出自己对于本文实验中存在的局限性思考。
关键词 一维卷积 神经网络 轴承故障
下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部