期刊文献+
共找到812篇文章
< 1 2 41 >
每页显示 20 50 100
采用多尺度自适应选择卷积神经网络的轴承故障诊断研究
1
作者 张玺君 尚继洋 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第2期127-135,共9页
针对轴承故障诊断方法中传统多尺度卷积神经网络对不同尺度的特征只是简单拼接,而未考虑不同尺度的特征差异的问题,提出一种多尺度自适应选择卷积神经网络轴承故障诊断模型(MSASCNN)。通过不同大小的宽卷积筛选原始轴承振动信号中的特征... 针对轴承故障诊断方法中传统多尺度卷积神经网络对不同尺度的特征只是简单拼接,而未考虑不同尺度的特征差异的问题,提出一种多尺度自适应选择卷积神经网络轴承故障诊断模型(MSASCNN)。通过不同大小的宽卷积筛选原始轴承振动信号中的特征,合并为初始特征;构建多尺度自适应选择卷积块,提取不同尺度的特征,利用改进的注意力机制自适应调整不同尺度的特征权重,加入残差连接,防止模型退化;通过分类器完成轴承故障诊断。在凯斯西储大学轴承数据集和XJTU-SY轴承数据集上的实验结果表明:在模型改进实验中,与没有改进注意力机制的模型相比,所提模型的轴承故障诊断准确率提升了1.98%;在不同信噪比的噪声干扰环境中,所提模型的轴承故障诊断准确率均高于93%。 展开更多
关键词 轴承故障诊断 卷积神经网络 自适应融合 注意力机制 尺度特征
下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究
2
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
下载PDF
卷积神经网络与视觉Transformer联合驱动的跨层多尺度融合网络高光谱图像分类方法 被引量:1
3
作者 赵凤 耿苗苗 +2 位作者 刘汉强 张俊杰 於俊 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2237-2248,共12页
高光谱图像(HSI)分类是地球科学和遥感影像处理任务中最受关注的研究热点之一。近年来,卷积神经网络(CNN)和视觉Transformer相结合的方法,通过综合考虑局部-全局信息,在HSI分类任务中取得了成功。然而,HSI中地物具有丰富的纹理信息和复... 高光谱图像(HSI)分类是地球科学和遥感影像处理任务中最受关注的研究热点之一。近年来,卷积神经网络(CNN)和视觉Transformer相结合的方法,通过综合考虑局部-全局信息,在HSI分类任务中取得了成功。然而,HSI中地物具有丰富的纹理信息和复杂多样的结构,且不同地物之间存在尺度差异。现有的二者结合的方法通常对多尺度地物目标的纹理和结构信息的提取能力有限。为了克服上述局限性,该文提出CNN与视觉Transformer联合驱动的跨层多尺度融合网络HSI分类方法。首先,从结合CNN与视觉Transformer的角度出发,设计了跨层多尺度局部-全局特征提取模块分支,其主要由卷积嵌入的视觉Transformer和跨层特征融合模块构成。具体来说,卷积嵌入的视觉Transformer通过深度融合多尺度CNN与视觉Transformer实现了多尺度局部-全局特征信息的有效提取,从而增强网络对不同尺度地物的关注。进一步地,跨层特征融合模块深度聚合了不同层次的多尺度局部-全局特征信息,以综合考虑地物的浅层纹理信息和深层结构信息。其次,构建了分组多尺度卷积模块分支来挖掘HSI中密集光谱波段潜在的多尺度特征。最后,为了增强网络对HSI中局部波段细节和整体光谱信息的挖掘,设计了残差分组卷积模块对局部-全局光谱特征进行提取。Indian Pines, Houston 2013和Salinas Valley 3个HSI数据集上的实验结果证实了所提方法的有效性。 展开更多
关键词 高光谱图像分类 卷积神经网络 视觉Transformer 尺度特征 融合网络
下载PDF
多尺度卷积神经网络融合Transformer的竹材缺陷识别方法
4
作者 杨松 张锐 朱良宽 《林业工程学报》 CSCD 北大核心 2024年第5期126-133,共8页
在竹材缺陷识别的研究中,竹片形状、缺陷部位颜色深浅及裂纹大小差异都是制约模型识别准确率的关键。针对上述问题,提出一种适用于中小数据集的多尺度卷积神经网络融合Transformer的竹材缺陷识别方法,以更好地提高竹材缺陷识别的准确率... 在竹材缺陷识别的研究中,竹片形状、缺陷部位颜色深浅及裂纹大小差异都是制约模型识别准确率的关键。针对上述问题,提出一种适用于中小数据集的多尺度卷积神经网络融合Transformer的竹材缺陷识别方法,以更好地提高竹材缺陷识别的准确率。该方法在卷积神经网络的主干上进行改进,从获取不同尺度语义信息的角度出发,首先利用卷积神经网络在不同尺度的特征图上捕捉图像局部语义信息,然后将不同尺度的语义特征映射为特征符号,同时引入Sinkhorn分词器对不同阶段的卷积神经网络特征符号化以减少特征冗余,再通过Transformer对特征符号之间的关系进行建模以学习图像全局语义信息。试验结果表明,与VGG16、ResNet50、DenseNet121、ViT这4种深度学习模型相比,基于多尺度卷积神经网络融合Transformer的方法能够更高效地提高竹材缺陷识别模型的性能,在竹材缺陷图像数据集上的平均识别准确率达到了99.13%。该方法识别速度更快、精度更高,且具有良好的鲁棒性,为竹材缺陷的实时自动识别提供了新思路,同时也验证了所提出方法的有效性。 展开更多
关键词 竹材缺陷识别 尺度 卷积神经网络 TRANSFORMER Sinkhorn分词器
下载PDF
基于卷积神经网络和NCC的两阶段的多尺度高精度定位的模板匹配算法
5
作者 蒲宝林 张卫华 蒲亦非 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期203-213,共11页
当前模板匹配算法中,基于灰度的模板匹配算法具有较好的稳定性和鲁棒性.但是对于大型图像和复杂模板,它可能需要大量的计算资源和时间.此外,在应对目标尺度变化较大时,基于灰度的模板匹配算法匹配效果较差.对于NCC算法自身速度较慢的问... 当前模板匹配算法中,基于灰度的模板匹配算法具有较好的稳定性和鲁棒性.但是对于大型图像和复杂模板,它可能需要大量的计算资源和时间.此外,在应对目标尺度变化较大时,基于灰度的模板匹配算法匹配效果较差.对于NCC算法自身速度较慢的问题,本文对NCC算法进行了改进,减少了平均36%的匹配时间.为了应对多尺度的问题,本文结合卷积神经网络,提出了基于卷积神经网络和NCC的两阶段的多尺度高精度定位的模板匹配算法.其中,在一阶段目标检测阶段,本文在YOLOX算法的基础上改进了主干网络和损失函数,改善了算法的计算速度以及匹配成功率,并利用一阶段目标检测的结果使二阶段NCC算法动态调整模板大小,极大地减少了NCC算法大规模制作模板时间,最终使得整体匹配精度远远高于传统基于灰度的模板匹配算法. 展开更多
关键词 模板匹配 尺度 卷积神经网络 两阶段 YOLOX
下载PDF
基于注意力引导多尺度降噪卷积神经网络的钢轨表面缺陷图像降噪
6
作者 陈仁祥 潘升 +2 位作者 杨黎霞 王建西 夏天 《铁道学报》 EI CAS CSCD 北大核心 2024年第5期123-131,共9页
针对钢轨表面缺陷图像降噪依赖人工设置滤波参数和缺陷边缘模糊的问题,提出基于注意力引导多尺度降噪卷积神经网络的钢轨表面缺陷图像降噪方法。首先采用深层网络中的多尺度卷积自动提取含噪图像的特征,使其不依赖于人工设置滤波参数,... 针对钢轨表面缺陷图像降噪依赖人工设置滤波参数和缺陷边缘模糊的问题,提出基于注意力引导多尺度降噪卷积神经网络的钢轨表面缺陷图像降噪方法。首先采用深层网络中的多尺度卷积自动提取含噪图像的特征,使其不依赖于人工设置滤波参数,并克服单尺度卷积特征不够精细导致缺陷边缘模糊的问题;其次利用跳跃连接融合网络深层特征和浅层特征,强化浅层特征影响,克服因网络加深导致浅层特征被忽略的问题,使特征更充分;然后利用注意力机制调节特征在空间不同位置的权重,筛选出能表征噪声的特征,获得噪声信息;最后通过重建模块去除含噪图像中的噪声,实现端到端的降噪。试验结果从定性和定量角度证明所提方法不仅降噪效果更好,且更有效地保留了缺陷边缘信息,为缺陷精确分割提供条件。 展开更多
关键词 钢轨表面缺陷 图像降噪 卷积神经网络 尺度特征
下载PDF
基于一维多尺度神经网络和库普曼池化的滚动轴承故障诊断方法
7
作者 孙祯 周素霞 《科学技术与工程》 北大核心 2024年第24期10297-10304,共8页
滚动轴承作为机械运转的核心部件,其发生故障会导致旋转机械运行状态的恶化。卷积网络作为滚动轴承故障诊断的一种方法,针对其固定窗口局限性,结合一维卷积神经网络(1D convolutional neural network, 1D-CNN)在处理一维数据的优势,利... 滚动轴承作为机械运转的核心部件,其发生故障会导致旋转机械运行状态的恶化。卷积网络作为滚动轴承故障诊断的一种方法,针对其固定窗口局限性,结合一维卷积神经网络(1D convolutional neural network, 1D-CNN)在处理一维数据的优势,利用多尺度思想在同一层同时使用不同大小的窗口提取信号特征,根据时间维度信息对异常检测方法的影响,将1D-CNN的池化层与Koopman模型结合,得到高阶动态特征;最后将所得到的故障特征输入全连接层中进行故障诊断。为验证模型优势,对所提出的初始模型和两种改进模型在相同工况下进行对比,同时与支持向量机(support vector machine, SVM)和BP神经网络(back propagation neural network, BPNN)等算法进行对比分析。结果表明:所提模型的识别效果较好,滚动轴承故障准确率可以达到99.99%。 展开更多
关键词 滚动轴承 故障诊断 一维多尺度卷积网络(1D-CNN) Koopman池化
下载PDF
基于多尺度一维卷积神经网络的弯管冲蚀损伤智能检测方法
8
作者 陈传智 李宁 +2 位作者 王畅 陈家梁 罗锦达 《科学技术与工程》 北大核心 2024年第5期1893-1899,共7页
针对高压管汇损伤需要提高检测效率和准确率的问题,提出一种基于多尺度一维卷积神经网络(multi-scale one-dimensional convolutional neural network,MS-1DCNN)的弯管冲蚀损伤智能检测新方法,即用多尺度卷积层代替传统的单一尺度卷积... 针对高压管汇损伤需要提高检测效率和准确率的问题,提出一种基于多尺度一维卷积神经网络(multi-scale one-dimensional convolutional neural network,MS-1DCNN)的弯管冲蚀损伤智能检测新方法,即用多尺度卷积层代替传统的单一尺度卷积层。在MS-1DCNN模型中,把通过模拟实验所得弯管冲蚀损伤原始时域信号作为多尺度一维卷积神经网络的输入,这样能解决传统方法依赖人工提取特征和专家知识的问题;然后,通过多尺度卷积层和池化层的交替连接对输入信号进行特征提取;最后,经由输出层输出弯管冲蚀损伤分类结果。模型试验结果表明:基于MS-1DCNN弯管冲蚀损伤检测方法可以有效检测出弯管冲蚀损伤,且平均检测准确率达到99.18%。研究可为高压管汇冲蚀损伤智能检测提供一种新思路。 展开更多
关键词 高压管汇 冲蚀损伤 一维卷积神经网络 尺度 智能检测
下载PDF
基于多尺度卷积神经网络的深圳市滑坡易发性评价
9
作者 张清 何毅 +5 位作者 陈学业 高秉海 张立峰 赵占骜 路建刚 张雅蕾 《中国地质灾害与防治学报》 CSCD 2024年第4期146-162,共17页
卷积神经网络(convolutional neural networks,CNN)模型因其强大的特征提取能力被广泛应用于滑坡易发性评估,但传统CNN已难以满足要求。文章提出一种能够顾及深层与浅层特征的多尺度卷积神经网络(multi-scale convolutional neural netw... 卷积神经网络(convolutional neural networks,CNN)模型因其强大的特征提取能力被广泛应用于滑坡易发性评估,但传统CNN已难以满足要求。文章提出一种能够顾及深层与浅层特征的多尺度卷积神经网络(multi-scale convolutional neural networks,MSCNN)模型,通过增加模型深度和样本的感受野,挖掘更深层和更稳定的特征,提高复杂场景下的滑坡易发性评估可靠性。文章以深圳市为研究区,根据系统性原则和代表性原则选取了12个深圳市滑坡影响因子,构建多尺度卷积神经网络滑坡易发性评估模型,并与多层感知器(multilayer perceptron,MLP)、支持向量机(support vector machine,SVM)以及随机森林(random forest,RF)等方法进行对比。结果表明,文章构建的MSCNN模型的AUC值(0.99)较高,优于MLP(0.97)、SVM(0.91)和RF(0.85),证明提出的MSCNN模型具有优异的预测能力;深圳市极高易发性区域面积约为105.3 km^(2),占研究区总面积的4.98%,主要分布在坡体较陡、植被覆盖稀疏和人类工程活动频繁的龙岗区,坡度、地表粗糙度和地表起伏度成为影响深圳市滑坡的主控因子。文章实现的滑坡易发性图反映了深圳市滑坡灾害的分布现状,可为深圳市未来滑坡灾害防治提供数据支持和关键技术支撑。 展开更多
关键词 尺度卷积神经网络 滑坡易发性评估 机器学习模型 深圳市
下载PDF
低过采样数字调制信号的多尺度一维卷积神经网络解调器
10
作者 陈显敏 符杰林 《计算机应用与软件》 北大核心 2024年第5期113-117,共5页
针对应用深度学习方法对数字调制信号进行解调时过采样要求较高的问题,设计低过采样的多尺度一维卷积神经网络数字解调器。该解调器可以在与传统解调器相同的过采样条件下,对BPSK、4-QAM、8-QAM、16-QAM四种数字调制信号进行解调,并能... 针对应用深度学习方法对数字调制信号进行解调时过采样要求较高的问题,设计低过采样的多尺度一维卷积神经网络数字解调器。该解调器可以在与传统解调器相同的过采样条件下,对BPSK、4-QAM、8-QAM、16-QAM四种数字调制信号进行解调,并能保证传统解调方法相同的误码性能。仿真结果表明,在高斯和Rayleigh衰落信道下,给出的数字调制信号解调器可以在保证解调误码性能的同时,减少了对采样倍数的要求,降低了神经网络结构的复杂性。 展开更多
关键词 低采样倍数 解调 尺度一维卷积神经网络 BPSK和M-QAM
下载PDF
基于多尺度卷积神经网络的DDoS攻击检测方法
11
作者 李春辉 王小英 +3 位作者 张庆洁 刘翰卓 梁嘉烨 高宁康 《电脑与电信》 2024年第6期35-39,共5页
近年来,网络安全面临着日益严峻的挑战,其中分布式拒绝服务(DDoS)攻击是网络威胁中的一种常见形式。为了应对这一挑战,提出了一种基于多尺度卷积神经网络(MSCNN)的DDoS攻击检测方法。在CICDDoS2019day1数据集训练模型,CICDDoS2019day2... 近年来,网络安全面临着日益严峻的挑战,其中分布式拒绝服务(DDoS)攻击是网络威胁中的一种常见形式。为了应对这一挑战,提出了一种基于多尺度卷积神经网络(MSCNN)的DDoS攻击检测方法。在CICDDoS2019day1数据集训练模型,CICDDoS2019day2数据集测试模型检测性能。通过利用MSCNN对网络流量进行预测和分类,能够有效识别DDoS攻击并减少误报率。实验表明,MSCNN方法在准确性、召回率、F1得分性能指标上优于SVM、DNN、CNN、LSTM和GRU。 展开更多
关键词 DDOS攻击 尺度卷积神经网络 网络安全 深度学习
下载PDF
基于多尺度卷积神经网络的绩效数据特征提取方法
12
作者 牛娅敏 《电子设计工程》 2024年第17期31-35,共5页
针对传统医疗机构绩效评估算法存在的主观性强、数据特征提取能力差的缺点,文中基于多尺度卷积神经网络提出一种绩效数据特征提取模型。该模型对传统卷积神经网络进行改进,使用空间化可提升效率的方法构建了胶囊网络,并使用多种尺寸不... 针对传统医疗机构绩效评估算法存在的主观性强、数据特征提取能力差的缺点,文中基于多尺度卷积神经网络提出一种绩效数据特征提取模型。该模型对传统卷积神经网络进行改进,使用空间化可提升效率的方法构建了胶囊网络,并使用多种尺寸不同的卷积核对数据进行训练,从而保证了特征提取的全面性。在数据训练过程中,使用熵权法对各参数指标进行权重确定,并用麻雀搜索算法进行模型参数优化。在实验测试中,参数优化后的模型预测准确率更高,在所有对比算法中,所提算法的MAE、MAPE、RMSE等误差指标最低,迭代次数也仅为7次,表明模型具有最优性能的同时训练速度也较快。 展开更多
关键词 卷积神经网络 尺度卷积 熵权法 麻雀搜索算法 胶囊网络 绩效数据分析
下载PDF
基于多尺度卷积神经网络和注意力机制的模拟电路早期故障诊断方法
13
作者 徐欣 侯成凯 《电子器件》 CAS 2024年第4期929-934,共6页
模拟电路具有非线性、元件容差等特性,导致不同故障模式之间存在混叠现象,特别是模拟电路早期故障,这大大增加了故障诊断的难度。因此,提出了一种基于小波变换和多尺度特征注意力卷积神经网络(MS-FACNN)的模拟电路早期故障诊断方法,采... 模拟电路具有非线性、元件容差等特性,导致不同故障模式之间存在混叠现象,特别是模拟电路早期故障,这大大增加了故障诊断的难度。因此,提出了一种基于小波变换和多尺度特征注意力卷积神经网络(MS-FACNN)的模拟电路早期故障诊断方法,采用小波变换得到脉冲响应信号的多尺度分量,利用设计好的MS-FACNN网络自动提取更加全面且高可分性故障特征,并实现故障模式识别。此外,采用高效通道注意力(ECA)聚焦故障高相关性特征,过滤低相关性的冗余信息,进一步提升模型特征提取能力。实验结果表明,相比传统方法,所提方法具有更强的故障特征提取能力,对四运放双二阶高通滤波器早期故障诊断的准确率达到99.18%。 展开更多
关键词 模拟电路 早期故障诊断 小波变换 尺度卷积神经网络 有效通道注意力
下载PDF
基于多尺度卷积神经网络屏幕内容图像无参考质量评价方法
14
作者 张巍 《辽宁工业大学学报(自然科学版)》 2024年第5期286-291,共6页
针对屏幕内容图像无参考质量评价问题,提出了一种基于深度学习的多尺度评价方法。利用多尺度神经网络提取屏幕内容图像在不同尺度下的表达特征,模拟人眼视觉系统对不同尺度图像的感受特性;将多尺度图像特征进行融合,得到图像质量的综合... 针对屏幕内容图像无参考质量评价问题,提出了一种基于深度学习的多尺度评价方法。利用多尺度神经网络提取屏幕内容图像在不同尺度下的表达特征,模拟人眼视觉系统对不同尺度图像的感受特性;将多尺度图像特征进行融合,得到图像质量的综合特征,并编码成特征向量;最后,使用特征向量拟合人眼主观打分。实验结果表明,与当前主流的质量评价方法相比,本方法与人眼主观打分评价结果更加一致,具有更高的皮尔逊相关系数和斯皮尔曼相关系数,能够更加准确地评估屏幕内容图像的视觉质量。 展开更多
关键词 无参考质量评价 深度学习 屏幕显示图像 尺度卷积神经网络
下载PDF
基于多尺度循环卷积神经网络的卫星通信信号识别
15
作者 袁中群 陈卫 +2 位作者 梁栋 王成东 张恒 《中国电子科学研究院学报》 2024年第3期219-227,共9页
针对目前的卫星通信调制分类算法大多忽略了不同尺度特征的融合问题,提出了一个多尺度循环卷积神经网络模型。该网络结构整合了双分支设计、压缩与激励策略、多尺度残差网络以及长短期记忆网络,旨在全面捕捉信号的多尺度特性并有效建模... 针对目前的卫星通信调制分类算法大多忽略了不同尺度特征的融合问题,提出了一个多尺度循环卷积神经网络模型。该网络结构整合了双分支设计、压缩与激励策略、多尺度残差网络以及长短期记忆网络,旨在全面捕捉信号的多尺度特性并有效建模时间序列。实验结果表明:文中所提模型在0 dB以上的识别准确率达到了97.1%,在13 dB时更进一步提升至99%;与经典的CNN2模型和LSTM2模型相比,在识别准确率上展现了显著优势,且相较于识别性能接近的CLDNN2模型,参数量减少了47.7%,训练时间缩短了68%;尤其是QAM16和QAM64两种调制样式识别准确率显著上升并且保持较高水平,这也进一步证实了模型多尺度特征融合策略的有效性。 展开更多
关键词 自动调制识别 尺度特征融合 卷积神经网络 深度学习
下载PDF
基于轻量化多尺度神经网络的ZPW-2000移频信号检测方法
16
作者 武晓春 刘欣然 《中国铁道科学》 EI CAS CSCD 北大核心 2024年第5期187-197,共11页
针对ZPW-2000移频信号在不平衡牵引电流干扰时低频信号难以检测的问题,提出基于卷积注意力模块的轻量化多尺度神经网络的移频信号低频信息检测方法。首先,根据ZPW-2000移频信号的载频范围,使用不同卷积核大小的多尺度层提取相应载频调... 针对ZPW-2000移频信号在不平衡牵引电流干扰时低频信号难以检测的问题,提出基于卷积注意力模块的轻量化多尺度神经网络的移频信号低频信息检测方法。首先,根据ZPW-2000移频信号的载频范围,使用不同卷积核大小的多尺度层提取相应载频调制下的移频信号特征;其次,建立线性倒残差模块实现网络轻量化,在保证网络检测准确率的同时减少网络参数,缩短网络检测时长;最后,引入卷积注意力模块,标定通道和空间特征权重,提升网络性能,通过全连接层进行分类,输出18种低频信号的概率分布。结果表明:将含有工频谐波干扰等5类噪声的移频信号输入低频检测模型中进行检测,平均准确率可达99.22%,召回率达到99.21%,综合评价指标值为0.992,检测时间不超过0.249 s。该方法检测效果更优,具有良好的抗干扰能力,可为带内噪声干扰条件下检测ZPW-2000移频信号的低频信息提供重要参考。 展开更多
关键词 轻量化卷积神经网络 谐波干扰 尺度神经网络 信号检测 ZPW-2000移频信号
下载PDF
国标麻将的多尺度骨干神经网络模型
17
作者 代君学 李霞丽 +1 位作者 刘博 王昭琦 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第5期137-144,共8页
在有多轮次、状态空间巨大、81种不同类别的番种、胡牌方式复杂的国标麻将中,普通的神经网络难以对复杂的数据进行表达和拟合。首次将多尺度骨干的深度神经网络用于实现麻将AI,以更好地捕获国标麻将的局部以及全局特征,适用于处理复杂数... 在有多轮次、状态空间巨大、81种不同类别的番种、胡牌方式复杂的国标麻将中,普通的神经网络难以对复杂的数据进行表达和拟合。首次将多尺度骨干的深度神经网络用于实现麻将AI,以更好地捕获国标麻将的局部以及全局特征,适用于处理复杂数据,做出更准确的游戏策略。基于IJCAI 2020 Champion的对局数据,对训练数据进行数据增强。采用增强后的数据,在NVIDAI GeForce RTX3090 LapTop GPU上进行了5天的监督学习训练,训练出的模型有52 M参数,动作准确率达到93.47%,弃牌准确率达到83.93%,鸣牌准确率达到97.56%。将提出的模型部署到北京大学开发的Botzone平台上,进入天梯榜前1%。 展开更多
关键词 深度学习 麻将 卷积神经网络 Res2Net50 尺度骨干架构
下载PDF
遥感影像目标检测多尺度熵神经网络架构搜索
18
作者 杨军 解恒静 +1 位作者 范红超 闫浩文 《测绘学报》 EI CSCD 北大核心 2024年第7期1384-1400,共17页
针对传统神经网络架构搜索需要耗费大量时间用于超网训练,搜索效率较低,搜索得到的模型无法高效解决遥感影像中多尺度目标检测困难、背景复杂度高的问题,本文提出采用多尺度熵神经网络架构搜索的方法进行遥感影像目标检测。首先,在搜索... 针对传统神经网络架构搜索需要耗费大量时间用于超网训练,搜索效率较低,搜索得到的模型无法高效解决遥感影像中多尺度目标检测困难、背景复杂度高的问题,本文提出采用多尺度熵神经网络架构搜索的方法进行遥感影像目标检测。首先,在搜索空间的基础模块中加入特征分离卷积以代替残差模块中的常规卷积,减少遥感影像中由于背景复杂度高而造成的信息间干扰,提高网络模型在复杂背景下的检测性能;然后,引入最大熵原理,计算搜索空间中每个候选网络的多尺度熵,将多尺度熵与特征金字塔网络相结合,以兼顾遥感影像大、中、小目标的检测;最后,在不进行参数训练的情况下利用渐进式进化算法搜索得到多尺度熵最大的网络模型用于目标检测任务,在保证模型检测精度的同时,提升网络搜索效率。本文方法在RSOD、DIOR和DOTA数据集上的平均检测精度均值分别达到93.1%、75.5%和73.6%,网络搜索时间为8.1 h。试验结果表明,与当前基准方法相比,本文方法能够显著提升网络的搜索效率,在目标检测任务中更好地结合了不同尺度下的特征并解决了影像背景复杂度高的问题。 展开更多
关键词 遥感影像 神经网络架构搜索 目标检测 特征分离卷积 最大熵 尺度 渐进式进化
下载PDF
基于改进卷积神经网络的变工况轴承故障诊断
19
作者 万欣 牛玉广 《轴承》 北大核心 2024年第8期68-73,79,共7页
原始信号中的故障特征随工况变化而散布在不同的观测尺度上,针对传统卷积神经网络(CNN)模型仅从单一尺度提取特征,容易出现域移现象并丢失其他尺度信息的问题,提出了基于多尺度自适应加权卷积神经网络(MSAWCNN)的故障诊断模型。首先,采... 原始信号中的故障特征随工况变化而散布在不同的观测尺度上,针对传统卷积神经网络(CNN)模型仅从单一尺度提取特征,容易出现域移现象并丢失其他尺度信息的问题,提出了基于多尺度自适应加权卷积神经网络(MSAWCNN)的故障诊断模型。首先,采用多个尺度的卷积核并行提取不同观测尺度上的特征;然后,引入自适应加权结构,动态调制多尺度特征以削弱运行条件对特征表达的影响;最后,使用全局均值池化(GAP)层代替全连接层,减少运算量并避免过拟合。利用西安交通大学转速连续变化的轴承数据集进行试验验证的结果表明:MSAWCNN模型的平均准确率达99.69%,具有较强的抗噪性,能从多个尺度全面地提取故障特征,适用于变工况下的轴承故障诊断。 展开更多
关键词 滚动轴承 故障诊断 变工况 卷积神经网络 自适应 加权 尺度分析 特征提取
下载PDF
基于多尺度一维卷积神经网络的入侵检测模型 被引量:1
20
作者 林伟 洪容容 《中国电子科学研究院学报》 北大核心 2023年第7期656-662,670,共8页
随着信息技术的快速发展,网络安全问题日益严峻,入侵检测成为保护网络系统的关键任务之一。为了获得更好的网络流量特征,提出了一种基于多尺度一维卷积神经网络的入侵检测模型。首先,利用一维卷积块提取数据的原始特征;然后,采用三种不... 随着信息技术的快速发展,网络安全问题日益严峻,入侵检测成为保护网络系统的关键任务之一。为了获得更好的网络流量特征,提出了一种基于多尺度一维卷积神经网络的入侵检测模型。首先,利用一维卷积块提取数据的原始特征;然后,采用三种不同尺度的一维卷积对网络入侵数据分别提取特征;最后,将不同尺度的特征融合,以构建出网络入侵检测模型。文中所提方法在两个公开的网络入侵检测数据集上进行了实验验证,结果表明,基于多尺度一维卷积神经网络融合的特征向量包含更加丰富网络流量特征,能够有效提高入侵的性能。 展开更多
关键词 尺度 一维卷积神经网络 入侵检测 特征融合
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部