期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
二维扩频系统同步技术研究
1
作者 王晓涓 牛小梅 《现代电子技术》 2008年第6期133-136,140,共5页
二维扩频通信系统是近年来提出的新的扩频通信方式,由于二维扩频系统从时域和频域上分别对数据信号进行频谱扩展,因此他同时具有时域扩频和频率扩频通信系统的特点。对于一个实际系统而言,同步是信号正确解调和恢复的前提。针对二维扩... 二维扩频通信系统是近年来提出的新的扩频通信方式,由于二维扩频系统从时域和频域上分别对数据信号进行频谱扩展,因此他同时具有时域扩频和频率扩频通信系统的特点。对于一个实际系统而言,同步是信号正确解调和恢复的前提。针对二维扩频特殊的时频域扩频矩阵结构,提出广义二维扩频矩阵的时间同步算法:该算法将二维扩频矩阵等效为一个一维时间序列,采用序贯捕获的方法捕获此时间序列的第一径,从而完成二维扩频矩阵的时间捕获。该算法不需要在数据序列中插入循环前缀,因而减少了系统开销,提高了带宽利用率。同时,对其在瑞利衰落环境中的同步性能进行详细的理论分析和推导。分析结果表明:该同步方法简单,具有良好的同步性能。 展开更多
关键词 扩频 同步技术 一维时间序列 时间捕获
下载PDF
运动生理学
2
《体育科技文献通报》 2001年第5期5-6,共2页
6804.2 20012361sEMG 信号分析及其应用研究进展=Some advancesin the research of sEMG signal analysis and itsapplication[刊,中,A]/王健∥体育科学.-2000.-20(4).-56-60 参 25(TY)肌电图∥肌肉收缩∥肌纤维∥分析∥肌肉∥神经表面... 6804.2 20012361sEMG 信号分析及其应用研究进展=Some advancesin the research of sEMG signal analysis and itsapplication[刊,中,A]/王健∥体育科学.-2000.-20(4).-56-60 参 25(TY)肌电图∥肌肉收缩∥肌纤维∥分析∥肌肉∥神经表面肌电信号是从肌肉表面通过电极引导、记录下来的神经肌肉系统活动时的一维时间序列信号,其变化与参与活动的运动单位数量、运动单位活动模式和代谢状态等因素有关,能够实时地、准确地和在非损伤状态下反映肌肉活动状态和功能状态。本文拟就 sEMG 信号分析及其应用研究进展进行系统回顾。 展开更多
关键词 应用研究进展 信号分析 运动生理学 表面肌电信号 体育科学 一维时间序列 肌电图 肌肉收缩 活动模式 肌纤
下载PDF
Remaining Useful Life Prediction of Aeroengine Based on Principal Component Analysis and One-Dimensional Convolutional Neural Network 被引量:4
3
作者 LYU Defeng HU Yuwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期867-875,共9页
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based... In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness. 展开更多
关键词 AEROENGINE remaining useful life(RUL) principal component analysis(PCA) one-dimensional convolution neural network(1D-CNN) time series prediction state parameters
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部