期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一维随机游走模型的两类问题
1
作者 阮效辉 柏世豪 《中学数学研究(华南师范大学)(上半月)》 2024年第4期29-30,共2页
概率是高中内容中一个重要的板块,在与递推数列有关的概率题中,基本都与随机游走模型有关,但很多学生不擅长解决这种问题.本文详细介绍了一维随机游走模型的两类问题:无限制随机游走与两端带吸收壁的随机游走,明晰两类问题的区别,掌握... 概率是高中内容中一个重要的板块,在与递推数列有关的概率题中,基本都与随机游走模型有关,但很多学生不擅长解决这种问题.本文详细介绍了一维随机游走模型的两类问题:无限制随机游走与两端带吸收壁的随机游走,明晰两类问题的区别,掌握如何思考以列出正确的递推关系. 展开更多
关键词 一维随机游走 无限制随机 两端带吸收壁的随机 递推数列
下载PDF
一维随机游走模型的两类问题
2
作者 阮效辉 柏世豪 《数学通讯》 2024年第11期29-30,57,共3页
本文详细介绍了一维随机游走模型的两类问题:无限制随机游走与两端带吸收壁的随机游走,明晰两类问题的区别,掌握如何思考以列出正确的递推关系。
关键词 一维随机游走 无限制随机 两端带吸收壁的随机 递推数列
原文传递
Recurrence and Polya Number of General One-Dimensional Random Walks
3
作者 张晓琨 万晶 +1 位作者 陆静菊 徐新平 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第8期293-296,共4页
The recurrence properties of random walks can be characterized by P61ya number, i.e., the probability that the walker has returned to the origin at least once. In this paper, we consider recurrence properties for a ge... The recurrence properties of random walks can be characterized by P61ya number, i.e., the probability that the walker has returned to the origin at least once. In this paper, we consider recurrence properties for a general 1D random walk on a line, in which at each time step the walker can move to the left or right with probabilities l and r, or remain at the same position with probability o (l + r + o = 1). We calculate Polya number P of this model and find a simple expression for P as, P = 1 - △, where △ is the absolute difference of l and r (△= |l - r|). We prove this rigorous expression by the method of creative telescoping, and our result suggests that the walk is recurrent if and only if the left-moving probability l equals to the right-moving probability r. 展开更多
关键词 random walk return probability Polya number
下载PDF
Stationary Probability and First-Passage Time of Biased Random Walk
4
作者 李井文 唐沈立 徐新平 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第9期330-334,共5页
In this paper, we consider the stationary probability and first-passage time of biased random walk on 1D chain, where at each step the walker moves to the left and right with probabilities p and q respectively(0 p, q ... In this paper, we consider the stationary probability and first-passage time of biased random walk on 1D chain, where at each step the walker moves to the left and right with probabilities p and q respectively(0 p, q 1,p + q = 1). We derive exact analytical results for the stationary probability and first-passage time as a function of p and q for the first time. Our results suggest that the first-passage time shows a double power-law F ^(N-1)~γ, where the exponent γ = 2 for N < |p-q|^(-1) and γ = 1 for N > |p-q|^(-1). Our study sheds useful insights into the biased random-walk process. 展开更多
关键词 random walk biased random walk first-passage time stationary probability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部