A central problem in the study of complexity is the measure of nonuniform complexity classes. BPPP/poly has been proved by Aldman, and EXPSPACEP/poly by Kannan. We propose the definition of approximate acceptance with...A central problem in the study of complexity is the measure of nonuniform complexity classes. BPPP/poly has been proved by Aldman, and EXPSPACEP/poly by Kannan. We propose the definition of approximate acceptance with which we discuss the nonuniform complexity of the K sized complete subgraph problem. The method of modal theory is used and the K sized complete subgraph problemP/poly, co NPP/poly and NPP/poly is proved. This paper solves the Karp Lipton′s open problem: “NPP/poly?”展开更多
Suppose that the outer mapping function of domain D has its second continuous derivatives. In this paper, the order proximation by (0,1,…,q) Hermite-Fejer interpolating polynomials at nearly Fejer's points of fun...Suppose that the outer mapping function of domain D has its second continuous derivatives. In this paper, the order proximation by (0,1,…,q) Hermite-Fejer interpolating polynomials at nearly Fejer's points of function of class A(D) are presented. Moreover in general the order of approximation is sharp.展开更多
In this paper we mainly discuss the nonconforming fimte element method for second order elliptic boundary value problems on anisotropic meshes. By changing thediscretization form(i.e., by use of numerical quadrature ...In this paper we mainly discuss the nonconforming fimte element method for second order elliptic boundary value problems on anisotropic meshes. By changing thediscretization form(i.e., by use of numerical quadrature in the procedure of computing the left load), we obtain the optimal estimate O(h), which is as same as in the traditionalfinite element analysis when the load f ∈ H1 (Ω)η Co(Ω) which is weaker than the previousstudies. The results obtained in this paper are also valid to the conforming triangular elementand nonconforming Carey's element.展开更多
It has been evident that the theory and methods of dynamic derivatives are playing an increasingly important role in hybrid modeling and computations. Being constructed on various kinds of hybrid grids, that is, tim...It has been evident that the theory and methods of dynamic derivatives are playing an increasingly important role in hybrid modeling and computations. Being constructed on various kinds of hybrid grids, that is, time scales, dynamic derivatives offer superior accuracy and flexibility in approximating mathematically important natural processes with hard-to-predict singularities, such as the epidemic growth with unpredictable jump sizes and option market changes with high uncertainties, as compared with conventional derivatives. In this article, we shall review the novel new concepts, explore delicate relations between the most frequently used second-order dynamic derivatives and conventional derivatives. We shall investigate necessary conditions for guaranteeing the consistency between the two derivatives. We will show that such a consistency may never exist in general. This implies that the dynamic derivatives provide entirely different new tools for sensitive modeling and approximations on hybrid grids. Rigorous error analysis will be given via asymptotic expansions for further modeling and computational applications. Numerical experiments will also be given.展开更多
This paper considers identification of the nonlinear autoregression with exogenous inputs(NARX system).The growth rate of the nonlinear function is required be not faster than linear withslope less than one.The value ...This paper considers identification of the nonlinear autoregression with exogenous inputs(NARX system).The growth rate of the nonlinear function is required be not faster than linear withslope less than one.The value of f(·) at any fixed point is recursively estimated by the stochasticapproximation (SA) algorithm with the help of kernel functions.Strong consistency of the estimatesis established under reasonable conditions,which,in particular,imply stability of the system.Thenumerical simulation is consistent with the theoretical analysis.展开更多
文摘A central problem in the study of complexity is the measure of nonuniform complexity classes. BPPP/poly has been proved by Aldman, and EXPSPACEP/poly by Kannan. We propose the definition of approximate acceptance with which we discuss the nonuniform complexity of the K sized complete subgraph problem. The method of modal theory is used and the K sized complete subgraph problemP/poly, co NPP/poly and NPP/poly is proved. This paper solves the Karp Lipton′s open problem: “NPP/poly?”
文摘Suppose that the outer mapping function of domain D has its second continuous derivatives. In this paper, the order proximation by (0,1,…,q) Hermite-Fejer interpolating polynomials at nearly Fejer's points of function of class A(D) are presented. Moreover in general the order of approximation is sharp.
基金Supported by NNSF of China(10371113)Supported by Foundation of Overseas Scholar of Chin&((2001)119)Supported by the project of Creative Engineering of Henan Province of China
文摘In this paper we mainly discuss the nonconforming fimte element method for second order elliptic boundary value problems on anisotropic meshes. By changing thediscretization form(i.e., by use of numerical quadrature in the procedure of computing the left load), we obtain the optimal estimate O(h), which is as same as in the traditionalfinite element analysis when the load f ∈ H1 (Ω)η Co(Ω) which is weaker than the previousstudies. The results obtained in this paper are also valid to the conforming triangular elementand nonconforming Carey's element.
文摘It has been evident that the theory and methods of dynamic derivatives are playing an increasingly important role in hybrid modeling and computations. Being constructed on various kinds of hybrid grids, that is, time scales, dynamic derivatives offer superior accuracy and flexibility in approximating mathematically important natural processes with hard-to-predict singularities, such as the epidemic growth with unpredictable jump sizes and option market changes with high uncertainties, as compared with conventional derivatives. In this article, we shall review the novel new concepts, explore delicate relations between the most frequently used second-order dynamic derivatives and conventional derivatives. We shall investigate necessary conditions for guaranteeing the consistency between the two derivatives. We will show that such a consistency may never exist in general. This implies that the dynamic derivatives provide entirely different new tools for sensitive modeling and approximations on hybrid grids. Rigorous error analysis will be given via asymptotic expansions for further modeling and computational applications. Numerical experiments will also be given.
基金supported by the National Natural Science Foundation of China under Grant Nos. 60821091and 60874001Grant from the National Laboratory of Space Intelligent ControlGuozhi Xu Posdoctoral Research Foundation
文摘This paper considers identification of the nonlinear autoregression with exogenous inputs(NARX system).The growth rate of the nonlinear function is required be not faster than linear withslope less than one.The value of f(·) at any fixed point is recursively estimated by the stochasticapproximation (SA) algorithm with the help of kernel functions.Strong consistency of the estimatesis established under reasonable conditions,which,in particular,imply stability of the system.Thenumerical simulation is consistent with the theoretical analysis.