期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
非Lipshitz一般集值变分不等式的广义投影算法 被引量:1
1
作者 李观荣 钟莉萍 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期92-95,共4页
设K是实Hibert空间H的非空闭凸子集,T:H→2H为集值映象,g:H→H为单值映象且Kg(H)。所谓一般集值变分不等式问题,即是指,求x*∈H,使得g(x*)∈K,w∈T(x*)且〈w,g(y)-g(x*)〉≥0,g(y)∈K。在求解以上一般集值变分不等式中,投影算法是... 设K是实Hibert空间H的非空闭凸子集,T:H→2H为集值映象,g:H→H为单值映象且Kg(H)。所谓一般集值变分不等式问题,即是指,求x*∈H,使得g(x*)∈K,w∈T(x*)且〈w,g(y)-g(x*)〉≥0,g(y)∈K。在求解以上一般集值变分不等式中,投影算法是常用的算法,但是传统的投影算法需集值映象T关于Hausdoff距离是Lipschtz的。首先,在不需要集值映象T关于Hausdoff距离是Lipschtz的情况下,建立了求解一般集值变分不等式的广义投影算法:第0步:取数列{ρ}j使得0<ρj<1,∑!j=0ρj=+!,∑!j=0ρj2<+!.取g(x0)∈K,令j:=0。第1步:令vj∈T(xj),如果vj=0,则停止,此时xj为问题的解。如果vj≠0,则找wj使得〈vj,g(y)-g(xj)〉+〈wj,g(y)-g(xj)〉≥0,g(y)∈K。如果wj=0,则停止,此时xj是问题的解;否则,进入第2步。第2步:计算xj+1使得g(xj+1)=PK[g(xj)+ρjwj];令j←j+1,回到第1步。然后,在{w}j有界和集值映象T为g-强伪单调的条件下,证明了由该算法产生的序列{x}j强收敛于一般集值变分不等式的解。最后,对广义投影算法作一些修正,保证算法中的序列{w}j是有界的。 展开更多
关键词 一般集值变分不等式 广义投影算法 非Lipschitz映象 强伪单调映象
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部