In this work, we treat scattering objects, water, surface and bottom in a truly unified manner in a parallel finitedifference time-domain (FDTD) scheme, which is suitable for distributed parallel computing in a mess...In this work, we treat scattering objects, water, surface and bottom in a truly unified manner in a parallel finitedifference time-domain (FDTD) scheme, which is suitable for distributed parallel computing in a message passing interface (MPI) programming environment. The algorithm is implemented on a cluster-based high performance computer system. Parallel computation is performed with different division methods in 2D and 3D situations. Based on analysis of main factors affecting the speedup rate and parallel efficiency, data communication is reduced by selecting a suitable scheme of task division. A desirable scheme is recommended, giving a higher speedup rate and better efficiency. The results indicate that the unified parallel FDTD algorithm provides a solution to the numerical computation of acoustic scattering.展开更多
This paper studies how to generate the reasonable information of travelers' decision in real network. This problem is very complex because the travelers' decision is constrained by different human behavior. Th...This paper studies how to generate the reasonable information of travelers' decision in real network. This problem is very complex because the travelers' decision is constrained by different human behavior. The network conditions can be predicted by using the advanced dynamic OD(Origin-Destination, OD) estimation techniques. Based on the improved mesoscopic traffic model, the predictable dynamic traffic guidance information can be obtained accurately.A consistency algorithm is designed to investigate the travelers' decision by simulating the dynamic response to guidance information. The simulation results show that the proposed method can provide the best guidance information. Further,a case study is conducted to verify the theoretical results and to draw managerial insights into the potential of dynamic guidance strategy in improving traffic performance.展开更多
基金Project supported by the National Defense Laboratory Foundation (Grant No.51444020103QT0601)the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘In this work, we treat scattering objects, water, surface and bottom in a truly unified manner in a parallel finitedifference time-domain (FDTD) scheme, which is suitable for distributed parallel computing in a message passing interface (MPI) programming environment. The algorithm is implemented on a cluster-based high performance computer system. Parallel computation is performed with different division methods in 2D and 3D situations. Based on analysis of main factors affecting the speedup rate and parallel efficiency, data communication is reduced by selecting a suitable scheme of task division. A desirable scheme is recommended, giving a higher speedup rate and better efficiency. The results indicate that the unified parallel FDTD algorithm provides a solution to the numerical computation of acoustic scattering.
基金Supported by National Natural Science Foundation of China under Grant Nos.71471104,71771019,71571109,and 71471167The University Science and Technology Program Funding Projects of Shandong Province under Grant No.J17KA211+1 种基金The Project of Public Security Department of Shandong Province under Grant No.GATHT2015-236The Major Social and Livelihood Special Project of Jinan under Grant No.20150905
文摘This paper studies how to generate the reasonable information of travelers' decision in real network. This problem is very complex because the travelers' decision is constrained by different human behavior. The network conditions can be predicted by using the advanced dynamic OD(Origin-Destination, OD) estimation techniques. Based on the improved mesoscopic traffic model, the predictable dynamic traffic guidance information can be obtained accurately.A consistency algorithm is designed to investigate the travelers' decision by simulating the dynamic response to guidance information. The simulation results show that the proposed method can provide the best guidance information. Further,a case study is conducted to verify the theoretical results and to draw managerial insights into the potential of dynamic guidance strategy in improving traffic performance.