We study an autonomous system of first order ordinary differential equations based on the vector product. We show that the system is completely integrable by constructing the first integrals.The connection with Nambu ...We study an autonomous system of first order ordinary differential equations based on the vector product. We show that the system is completely integrable by constructing the first integrals.The connection with Nambu mechanics is established.The extension to higher dimensions is also discussed.展开更多
Seismic anisotropy is a relatively common seismic wave phenomenon in laminated sedimentary rocks such as shale and it can be used to investigate mechanical properties of such rocks and other geological materials. Youn...Seismic anisotropy is a relatively common seismic wave phenomenon in laminated sedimentary rocks such as shale and it can be used to investigate mechanical properties of such rocks and other geological materials. Young's modulus and Poisson's ratio are the most common mechanical properties determined in various rock engineering practices. Approximate and explicit equations are proposed for determining Young's modulus and Poisson's ratio in anisotropic rocks, in which the symmetry plane and symmetry axis of the anisotropy are derived from the constitutive equation of transversely isotropic rock. These equations are based on the media decomposition principle and seismic wave perturbation theory and their accuracy is tested on two sets of laboratory data. A strong correlation is found for Young's modulus in two principal directions and for Poisson's ratio along the symmetry plane. Further, there is an underprediction of Poisson's ratio along the symmetry axis, although the overall behavior follows the trend of the measured data. Tests on a real dataset show that it is necessary to account for anisotropy when characterizing rock mechanical properties of shale. The approximate equations can effectively estimate anisotropic Young's modulus and Poisson's ratio, both of which are critical rock mechanical data input for hydraulic fracturing engineering.展开更多
Considering rank s fields obey first order equation of motion, we study the dynamics of such fields in a 3-dimensionaJ self-duaJ space-like warped AdS3 black hole background. We obtain a Klein-Gordon-like equation for...Considering rank s fields obey first order equation of motion, we study the dynamics of such fields in a 3-dimensionaJ self-duaJ space-like warped AdS3 black hole background. We obtain a Klein-Gordon-like equation for tensor fields. By using gauge constraint and traceless condition, we will find the exact solutions of the equations of motion. Then, we will Compute the quasi-normal modes by imposing appropriate boundary conditions at horizon and infinity.展开更多
文摘We study an autonomous system of first order ordinary differential equations based on the vector product. We show that the system is completely integrable by constructing the first integrals.The connection with Nambu mechanics is established.The extension to higher dimensions is also discussed.
基金supported by the National Science and Technology Major Project of China (Grant No. 2016ZX05024001-008)
文摘Seismic anisotropy is a relatively common seismic wave phenomenon in laminated sedimentary rocks such as shale and it can be used to investigate mechanical properties of such rocks and other geological materials. Young's modulus and Poisson's ratio are the most common mechanical properties determined in various rock engineering practices. Approximate and explicit equations are proposed for determining Young's modulus and Poisson's ratio in anisotropic rocks, in which the symmetry plane and symmetry axis of the anisotropy are derived from the constitutive equation of transversely isotropic rock. These equations are based on the media decomposition principle and seismic wave perturbation theory and their accuracy is tested on two sets of laboratory data. A strong correlation is found for Young's modulus in two principal directions and for Poisson's ratio along the symmetry plane. Further, there is an underprediction of Poisson's ratio along the symmetry axis, although the overall behavior follows the trend of the measured data. Tests on a real dataset show that it is necessary to account for anisotropy when characterizing rock mechanical properties of shale. The approximate equations can effectively estimate anisotropic Young's modulus and Poisson's ratio, both of which are critical rock mechanical data input for hydraulic fracturing engineering.
文摘Considering rank s fields obey first order equation of motion, we study the dynamics of such fields in a 3-dimensionaJ self-duaJ space-like warped AdS3 black hole background. We obtain a Klein-Gordon-like equation for tensor fields. By using gauge constraint and traceless condition, we will find the exact solutions of the equations of motion. Then, we will Compute the quasi-normal modes by imposing appropriate boundary conditions at horizon and infinity.