由于高阶响应对结构涡激振动存在显著影响,文中在考虑其影响的前提下利用经典Van der Pol尾流振子模型研究了立管在均匀流中的涡激振动特性。在尾流振子与结构模型的相互作用中同时考虑了一阶响应和高阶响应的影响,从而推导了一种考虑...由于高阶响应对结构涡激振动存在显著影响,文中在考虑其影响的前提下利用经典Van der Pol尾流振子模型研究了立管在均匀流中的涡激振动特性。在尾流振子与结构模型的相互作用中同时考虑了一阶响应和高阶响应的影响,从而推导了一种考虑了一阶—高阶响应的涡激振动模型。并在此基础上,分析了考虑位移、速度和加速度三种不同右端耦合项作用下的响应特性。此外,还针对不同的质量阻尼比,比较了考虑高阶响应影响和未考虑高阶响应影响情况下系统的涡激振动特性。结果表明,考虑一阶—高阶响应的理论模型能更精确地反映该系统的振动特性。尾流振子和立管的运动幅值都有一定程度的增大。尽管计算结果显示高阶响应比一阶响应小若干个量级,但是不可以忽视高阶响应,因为它对一阶响应存在明显的影响。展开更多
In the present work, analytical solutions for laminated composite doubly curved panels on rectangular plan form undergoing small deformations and subjected to uniformly distributed transverse load have been obtained. ...In the present work, analytical solutions for laminated composite doubly curved panels on rectangular plan form undergoing small deformations and subjected to uniformly distributed transverse load have been obtained. The problem is formulated using first order shear deformation theory. The spatial descretization of the linear differential equations is carried out using fast converging finite double Chebyshev series. The effect of panel thickness, curvature, boundary conditions, lamination scheme as well as material property on the static response of panel has been investigated in detail.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.11272211)National Program on Key Basic Research Project of China(No.2015CB251203)
文摘由于高阶响应对结构涡激振动存在显著影响,文中在考虑其影响的前提下利用经典Van der Pol尾流振子模型研究了立管在均匀流中的涡激振动特性。在尾流振子与结构模型的相互作用中同时考虑了一阶响应和高阶响应的影响,从而推导了一种考虑了一阶—高阶响应的涡激振动模型。并在此基础上,分析了考虑位移、速度和加速度三种不同右端耦合项作用下的响应特性。此外,还针对不同的质量阻尼比,比较了考虑高阶响应影响和未考虑高阶响应影响情况下系统的涡激振动特性。结果表明,考虑一阶—高阶响应的理论模型能更精确地反映该系统的振动特性。尾流振子和立管的运动幅值都有一定程度的增大。尽管计算结果显示高阶响应比一阶响应小若干个量级,但是不可以忽视高阶响应,因为它对一阶响应存在明显的影响。
文摘In the present work, analytical solutions for laminated composite doubly curved panels on rectangular plan form undergoing small deformations and subjected to uniformly distributed transverse load have been obtained. The problem is formulated using first order shear deformation theory. The spatial descretization of the linear differential equations is carried out using fast converging finite double Chebyshev series. The effect of panel thickness, curvature, boundary conditions, lamination scheme as well as material property on the static response of panel has been investigated in detail.