SAPO-34 was synthesized with n-butylamine(BA) as a template for the first time.Crystallization temperature and initial Si amount were important factors leading to successful syntheses.Lamellar AlPO-kanemite tends to...SAPO-34 was synthesized with n-butylamine(BA) as a template for the first time.Crystallization temperature and initial Si amount were important factors leading to successful syntheses.Lamellar AlPO-kanemite tends to form as the major phase or as an impurity of SAPO-34 at lower crystallization temperatures,though a higher initial Si amount may offer a positive effect on the crystallization of SAPO-34 that mitigates the low temperature.Higher temperature(240℃) can effectively suppress the generation of lamellar materials and allow the synthesis of pure SAPO-34 with a wider range of Si incorporation.The crystallization processes at 200 and 240℃ were investigated and compared.We used the aminothermal method to synthesize SAPO-34-BA at 240℃ and also found n-propylamine is a suitable template for the synthesis of SAPO-34.The SAPO-34-BA products were characterized by many techniques.SAPO-34-BA has good thermal stability,crystallinity and porosity.BA remained intact in the crystals with ~1.8 BA molecule per chabazite cage.The catalytic performance of SAPO-34 was tested in the methanol amination reaction,which showed high methanol conversion and selectivity for methylamine plus dimethylamine under the conditions investigated,suggesting that this material is a good candidate for the synthesis of methylamines.展开更多
The catalytic performance of some quaternary ammonium salts for the liquid phase reaction of butanol and hydrochloric acid at different conditions was studied experimentally and compared with the traditional catalyst ...The catalytic performance of some quaternary ammonium salts for the liquid phase reaction of butanol and hydrochloric acid at different conditions was studied experimentally and compared with the traditional catalyst (ZnCl2). The organic ammonium catalysts investigated include ionic liquids N-butyl-N-methyl imidazolium fluoborate ([BMIM][BF4]) and N-butyl-N-methylimidazolium chloride ([BMIM]Cl) as well as hydrochloric salts of N-methylimidazol ([HMIM]Cl), pyridine ([HPy]Cl) and triethylamine ([HEt3N]Cl). It is shown that the intrinsic catalytic performance of all organic ammonium salts except [HEt3N]Cl is slightly superior to ZnCl2, while the selectivity of butyl chloride is nearly at the same level around 96%. The conversion of butanol increases slightly with temperature and the catalyst amount added while the variation of selectivity is not obvious. Based on the recycle experiments, the ionic liquids as catalyst for the reaction of butanol and hydrochloric acid can be used more than 5 times, which suggests great potential of using ionic liquids as novel catalyst for such reactions.展开更多
A slow bromination process of butyl rubber (IIR) suffers from low efficiency and low selectivity (S) of target-product. To obtain suitable approach to intensify the process, effects of assistant solvents and mixin...A slow bromination process of butyl rubber (IIR) suffers from low efficiency and low selectivity (S) of target-product. To obtain suitable approach to intensify the process, effects of assistant solvents and mixing inten-sity on the bromination process were systemically studied in this paper. The reaction process was found constantly accelerated with the increasing dosage and polarity of assistant solvent. Hexane with 30%(by volume) dichloro-methane was found as the suitable solvent component, where the stable conversion of 1,4-isoprene transferring to target product (xA1s) of 80.2%and the corresponding S of 91.2%were obtained in 5 min. The accelerated reaction process was demonstrated being remarkably affected by mixing intensity until the optimal stirring rate of 1100 r·min-1 in a stirred tank reactor. With better mixing condition, a further intensification of the process was achieved in a ro-tating packed bed (RPB) reactor, where xA1s of 82.6% and S of 91.9% were obtained in 2 min. The usage of the suitable solvent component and RPB has potential application in the industrial bromination process intensification.展开更多
Para-tert-butyl phenol (p-TBP) and 2,4-di-tert-butyl phenol (2,4-DTBP) are widely used for the preparation of antioxidants. Zeolite catalysts showed good performance for the synthesis of p-TBP and 2,4-DTBP. In this wo...Para-tert-butyl phenol (p-TBP) and 2,4-di-tert-butyl phenol (2,4-DTBP) are widely used for the preparation of antioxidants. Zeolite catalysts showed good performance for the synthesis of p-TBP and 2,4-DTBP. In this work, zeolite H-mordenite (HM) catalyst was prepared and the alkylation of phenol with tert-butyl alcohol over zeolite HM catalyst was investigated at different reaction conditions. It is found that increasing temperature enhances the selectivity to p-TBP and the optimum reaction temperature for phenol conversion is 438 K. Increasing flow rate decreases phenol conversion apparently while the selectivity to p-TBP has a little increase. The suitable tert-butyl alcohol/phenol molar ratio is 2. Lower alcohol/phenol molar ratios are beneficial to p-TBP while higher ones are helpful for producing 2,4-DTBP.展开更多
In order to design the relief system size of di-tert-butyl peroxide(DTBP) storage tanks,the runaway re-action of DTBP was simulated by accelerating rate calorimeter(ARC).The results indicated that under adiabatic cond...In order to design the relief system size of di-tert-butyl peroxide(DTBP) storage tanks,the runaway re-action of DTBP was simulated by accelerating rate calorimeter(ARC).The results indicated that under adiabatic conditions the initial exothermic temperature was 102.6 ℃,the maximum self-heating rate was 3.095×107 ℃·min-1,the maximum self-heating temperature was 375.9 ℃,and the pressure produced by unit mass was 4.512 MPa·g-1.Judged by ARC test,the emergency relief system for DTBP was a hybrid system.Based on Design Institute for Emergency Relief System(DIERS) method,the releasing mass flow rate W was determined by Leung methods,and the mass velocity G was calculated by two modified Omega methods.The two relief sizes calculated by monograph Omega method and arithmetic Omega method are close,with only 0.63% relative error.The monograph Omega method is more convenient to apply.展开更多
The complicated reaction mechanism and the character of competitive reactions lead to a stringent requirement for the catalyst of C_4 alkylation process. Due to their unique properties, ionic liquids(ILs) are thought ...The complicated reaction mechanism and the character of competitive reactions lead to a stringent requirement for the catalyst of C_4 alkylation process. Due to their unique properties, ionic liquids(ILs) are thought to be new potential acid catalysts for C_4 alkylation. An analysis of the regular and modified chloroaluminate ILs, novel Br?nsted ILs and composite ILs used in isobutane/butene alkylation shows that the use of either ILs or ILs coupled with mineral acid as homogeneous catalysts can help to greatly adjust the acid strength. By modifying the structural parameters of the cations and anions of the ILs, the solubility of the reactants could also be adjusted, which in turn displays a positive effect on improving the activity of ILs. Immobilization of ILs is an effective way to modulate the surface adsorption/desorption properties and acid strength distribution of the solid acid catalysts. Such a process has a tremendous potential to reduce the deactivation of catalyst and enhance the activity of the solid acid catalyst. The development of novel acid catalysts for C_4 alkylation is a comprehensive consideration of acid strength and its distribution, interfacial properties and transport characteristics.展开更多
In liquid-liquid systems, the substrates in the liquids are inaccessible to each other for the reaction. By adding a small quantity of phase transfer catalyst, the reaction can be made accessible and accelerated. The ...In liquid-liquid systems, the substrates in the liquids are inaccessible to each other for the reaction. By adding a small quantity of phase transfer catalyst, the reaction can be made accessible and accelerated. The present study involves the phase transfer catalyzed oxidation of 2-methyl-l-butanol by quaternary ammonium permanganate (tricaprylyl methyl ammonium permanganate). The attempt was to compare the kinetics under homogeneous and heterogeneous conditions. Experiments were conducted in a batch reactor to determine the kinetics under homogeneous conditions. A baffled horosilicate agitated reactor was used to find the enhancement factor and the kinetics under heterogeneous conditions. The rate constants determined under both homogeneous and heterogeneous conditions agreed very weU. The oxidation was found to be first order with respect to each of the reactants, quaternary ammonium permanganate and the alcohol, resulting in an overall second order rate expression. Aliquat336 (tricaprylylmethylammonium chloride) was found to be the best compared with the other catalysts tested (triethylbenzylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide and tetrabutylammonium hydrogen sulfate) and it gave an enhancement factor of 9.8.展开更多
Alkylation of toluene With 2-chloro-2-methylpropane (t-Bu-C1) to synthesize para-tert-butyltoluene (PTBT) was carded out in the presence of triethylamine hydrochloride-aluminum chloride ionic liquids used as the c...Alkylation of toluene With 2-chloro-2-methylpropane (t-Bu-C1) to synthesize para-tert-butyltoluene (PTBT) was carded out in the presence of triethylamine hydrochloride-aluminum chloride ionic liquids used as the catalyst. The ionic liquids were prepared with different molar ratios of Et3NHC1 to A1CI3, and the effect of the molar ratio between A1C13 and Et3NHC1, the reaction time, the reaction temperature, the ionic liquid dosage, as well as the molar ratio of toluene to chloro- 2-methylpropane on the alkylation reaction of toluene with chloro-2-methyl-propane was investigated. The test results showed that the acidic ionic liquids prepared with Et3NHC1 and A1C13 had good activity and selectivity for the alkylation reaction of toluene with alkyl chloride to produce PTBT. The optimal reaction conditions were specified at an A1C13 to Et3N- HCI ratio of 1.6, a reaction temperature of 20 ℃, a mass fraction of toluene to ionic liquid of 10%, and a chloro-2-methyl- propane to toluene molar ratio of 0.5. Under the suitable reaction conditions, a 98% conversion of chloro-2-methylpropane and an 82.5% selectivity of PTBT were obtained. Ionic liquids could be reused 5 times with its catalytic activity unchanged, and the regenerated ionic liquids can be recycled.展开更多
基金supported by the National Natural Science Foundation of China(21676262,21476228,21506207)the Key Research Program of Frontier Sciences of CAS(QYZDB-SSW-JSC040)~~
文摘SAPO-34 was synthesized with n-butylamine(BA) as a template for the first time.Crystallization temperature and initial Si amount were important factors leading to successful syntheses.Lamellar AlPO-kanemite tends to form as the major phase or as an impurity of SAPO-34 at lower crystallization temperatures,though a higher initial Si amount may offer a positive effect on the crystallization of SAPO-34 that mitigates the low temperature.Higher temperature(240℃) can effectively suppress the generation of lamellar materials and allow the synthesis of pure SAPO-34 with a wider range of Si incorporation.The crystallization processes at 200 and 240℃ were investigated and compared.We used the aminothermal method to synthesize SAPO-34-BA at 240℃ and also found n-propylamine is a suitable template for the synthesis of SAPO-34.The SAPO-34-BA products were characterized by many techniques.SAPO-34-BA has good thermal stability,crystallinity and porosity.BA remained intact in the crystals with ~1.8 BA molecule per chabazite cage.The catalytic performance of SAPO-34 was tested in the methanol amination reaction,which showed high methanol conversion and selectivity for methylamine plus dimethylamine under the conditions investigated,suggesting that this material is a good candidate for the synthesis of methylamines.
基金Supported by the National Natural Science Foundation of China (No.20376004)
文摘The catalytic performance of some quaternary ammonium salts for the liquid phase reaction of butanol and hydrochloric acid at different conditions was studied experimentally and compared with the traditional catalyst (ZnCl2). The organic ammonium catalysts investigated include ionic liquids N-butyl-N-methyl imidazolium fluoborate ([BMIM][BF4]) and N-butyl-N-methylimidazolium chloride ([BMIM]Cl) as well as hydrochloric salts of N-methylimidazol ([HMIM]Cl), pyridine ([HPy]Cl) and triethylamine ([HEt3N]Cl). It is shown that the intrinsic catalytic performance of all organic ammonium salts except [HEt3N]Cl is slightly superior to ZnCl2, while the selectivity of butyl chloride is nearly at the same level around 96%. The conversion of butanol increases slightly with temperature and the catalyst amount added while the variation of selectivity is not obvious. Based on the recycle experiments, the ionic liquids as catalyst for the reaction of butanol and hydrochloric acid can be used more than 5 times, which suggests great potential of using ionic liquids as novel catalyst for such reactions.
基金Supported by the National Natural Science Foundation of China(21176014,20990221,21121064)the Science-Technology Project for Supervisors of Excellent Doctor Degree Thesis of Beijing(20111001001)
文摘A slow bromination process of butyl rubber (IIR) suffers from low efficiency and low selectivity (S) of target-product. To obtain suitable approach to intensify the process, effects of assistant solvents and mixing inten-sity on the bromination process were systemically studied in this paper. The reaction process was found constantly accelerated with the increasing dosage and polarity of assistant solvent. Hexane with 30%(by volume) dichloro-methane was found as the suitable solvent component, where the stable conversion of 1,4-isoprene transferring to target product (xA1s) of 80.2%and the corresponding S of 91.2%were obtained in 5 min. The accelerated reaction process was demonstrated being remarkably affected by mixing intensity until the optimal stirring rate of 1100 r·min-1 in a stirred tank reactor. With better mixing condition, a further intensification of the process was achieved in a ro-tating packed bed (RPB) reactor, where xA1s of 82.6% and S of 91.9% were obtained in 2 min. The usage of the suitable solvent component and RPB has potential application in the industrial bromination process intensification.
文摘Para-tert-butyl phenol (p-TBP) and 2,4-di-tert-butyl phenol (2,4-DTBP) are widely used for the preparation of antioxidants. Zeolite catalysts showed good performance for the synthesis of p-TBP and 2,4-DTBP. In this work, zeolite H-mordenite (HM) catalyst was prepared and the alkylation of phenol with tert-butyl alcohol over zeolite HM catalyst was investigated at different reaction conditions. It is found that increasing temperature enhances the selectivity to p-TBP and the optimum reaction temperature for phenol conversion is 438 K. Increasing flow rate decreases phenol conversion apparently while the selectivity to p-TBP has a little increase. The suitable tert-butyl alcohol/phenol molar ratio is 2. Lower alcohol/phenol molar ratios are beneficial to p-TBP while higher ones are helpful for producing 2,4-DTBP.
文摘In order to design the relief system size of di-tert-butyl peroxide(DTBP) storage tanks,the runaway re-action of DTBP was simulated by accelerating rate calorimeter(ARC).The results indicated that under adiabatic conditions the initial exothermic temperature was 102.6 ℃,the maximum self-heating rate was 3.095×107 ℃·min-1,the maximum self-heating temperature was 375.9 ℃,and the pressure produced by unit mass was 4.512 MPa·g-1.Judged by ARC test,the emergency relief system for DTBP was a hybrid system.Based on Design Institute for Emergency Relief System(DIERS) method,the releasing mass flow rate W was determined by Leung methods,and the mass velocity G was calculated by two modified Omega methods.The two relief sizes calculated by monograph Omega method and arithmetic Omega method are close,with only 0.63% relative error.The monograph Omega method is more convenient to apply.
基金Supported by the National Natural Science Foundation of China(21276163,21576168)
文摘The complicated reaction mechanism and the character of competitive reactions lead to a stringent requirement for the catalyst of C_4 alkylation process. Due to their unique properties, ionic liquids(ILs) are thought to be new potential acid catalysts for C_4 alkylation. An analysis of the regular and modified chloroaluminate ILs, novel Br?nsted ILs and composite ILs used in isobutane/butene alkylation shows that the use of either ILs or ILs coupled with mineral acid as homogeneous catalysts can help to greatly adjust the acid strength. By modifying the structural parameters of the cations and anions of the ILs, the solubility of the reactants could also be adjusted, which in turn displays a positive effect on improving the activity of ILs. Immobilization of ILs is an effective way to modulate the surface adsorption/desorption properties and acid strength distribution of the solid acid catalysts. Such a process has a tremendous potential to reduce the deactivation of catalyst and enhance the activity of the solid acid catalyst. The development of novel acid catalysts for C_4 alkylation is a comprehensive consideration of acid strength and its distribution, interfacial properties and transport characteristics.
文摘In liquid-liquid systems, the substrates in the liquids are inaccessible to each other for the reaction. By adding a small quantity of phase transfer catalyst, the reaction can be made accessible and accelerated. The present study involves the phase transfer catalyzed oxidation of 2-methyl-l-butanol by quaternary ammonium permanganate (tricaprylyl methyl ammonium permanganate). The attempt was to compare the kinetics under homogeneous and heterogeneous conditions. Experiments were conducted in a batch reactor to determine the kinetics under homogeneous conditions. A baffled horosilicate agitated reactor was used to find the enhancement factor and the kinetics under heterogeneous conditions. The rate constants determined under both homogeneous and heterogeneous conditions agreed very weU. The oxidation was found to be first order with respect to each of the reactants, quaternary ammonium permanganate and the alcohol, resulting in an overall second order rate expression. Aliquat336 (tricaprylylmethylammonium chloride) was found to be the best compared with the other catalysts tested (triethylbenzylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide and tetrabutylammonium hydrogen sulfate) and it gave an enhancement factor of 9.8.
基金the financial support from the Beijing University of Chemical Technologythe Key Laboratory of Advanced Chemical Engineering and Technology, Beijing Institute of Petrochemical Technology, for the analysis of samples
文摘Alkylation of toluene With 2-chloro-2-methylpropane (t-Bu-C1) to synthesize para-tert-butyltoluene (PTBT) was carded out in the presence of triethylamine hydrochloride-aluminum chloride ionic liquids used as the catalyst. The ionic liquids were prepared with different molar ratios of Et3NHC1 to A1CI3, and the effect of the molar ratio between A1C13 and Et3NHC1, the reaction time, the reaction temperature, the ionic liquid dosage, as well as the molar ratio of toluene to chloro- 2-methylpropane on the alkylation reaction of toluene with chloro-2-methyl-propane was investigated. The test results showed that the acidic ionic liquids prepared with Et3NHC1 and A1C13 had good activity and selectivity for the alkylation reaction of toluene with alkyl chloride to produce PTBT. The optimal reaction conditions were specified at an A1C13 to Et3N- HCI ratio of 1.6, a reaction temperature of 20 ℃, a mass fraction of toluene to ionic liquid of 10%, and a chloro-2-methyl- propane to toluene molar ratio of 0.5. Under the suitable reaction conditions, a 98% conversion of chloro-2-methylpropane and an 82.5% selectivity of PTBT were obtained. Ionic liquids could be reused 5 times with its catalytic activity unchanged, and the regenerated ionic liquids can be recycled.