Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy...Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.展开更多
In this paper,we study reduced rings in which every element is a sum of three tripotents that commute,and determine the integral domains over which every n£n matrix is a sum of three tripotents.It is proved that ...In this paper,we study reduced rings in which every element is a sum of three tripotents that commute,and determine the integral domains over which every n£n matrix is a sum of three tripotents.It is proved that for an integral domain R,every matrix in M_(n)(R)is a sum of three tripotents if and only if R■Zp with p=2,3,5 or 7.展开更多
V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated...V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2.展开更多
The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was ...The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was proposed according to the mode of occurrence of arsenic in the slag and its amphoteric characteristic.The leaching experiments were conducted in the alkaline aqueous medium,with bubbling of oxygen into the solution,and the optimal conditions for leaching arsenic were determined.The results showed that the extraction rate of arsenic was maximized at 99.10%under the optimal conditions of temperature 140 ℃,NaOH concentration 150 g/L,oxygen partial pressure 0.5 MPa,and a liquid-to-solid ratio 5:1.Based on the solubilities of As2O5,ZnO and PbO in NaOH solution at 25 ℃,a method for the separation of As in the form of sodium arsenate salt from the arsenic-rich leachate via cooling crystallization was established,and the reaction medium could be fully recycled.The crystallization rate was confirmed to reach 88.9%(calculated on the basis of Na3AsO4) upon a direct cooling of the hot leachate down to room temperature.On the basis of redox potentials,the sodium arsenate solution could be further reduced by sulfur dioxide(SO2) gas to arsenite,at a reduction yield of 92%under the suitable conditions.Arsenic trioxide with regular octahedron shape could be prepared successfully from the reduced solution,and further recycled to the purification process to purify the zinc sulfate solution.Also,sodium arsenite solution obtained after the reduction of arsenate could be directly used to purify the zinc sulfate solution.Therefore,the technical scheme of alkaline leaching with pressured oxygen,cooling crystallization,arsenate reduction by SO2 gas,and arsenic trioxide preparation,provides an attractive approach to realize the resource utilization of arsenic-containing cobalt and nickel slag.展开更多
A stable PNIPAM/Fe_3O_4/g-C_3N_4 composite photocatalyst was designed and prepared by a thermal photoinitiation technology.The structure and properties of the materials were characterized and the composite photocataly...A stable PNIPAM/Fe_3O_4/g-C_3N_4 composite photocatalyst was designed and prepared by a thermal photoinitiation technology.The structure and properties of the materials were characterized and the composite photocatalyst was found to show good stability for tetracycline degradation.The sample not only retained the magnetic properties of Fe_3O_4,allowing it to be recycled,but its photocatalytic properties could also be changed by controlling the temperature of the reaction system.The degradation intermediate products of tetracycline were further investigated by MS.This work provides a new facile strategy for the development of intelligent and recyclable photocatalytic materials.展开更多
Co3O4 catalysts prepared with different precipitants(NH3·H2O,KOH,NH4HCO3,K2CO3 and KHCO3)were investigated for the oxidation of formaldehyde(HCHO).Among these,KHCO3-precipitated Co3O4(KHCO3-Co) was the most...Co3O4 catalysts prepared with different precipitants(NH3·H2O,KOH,NH4HCO3,K2CO3 and KHCO3)were investigated for the oxidation of formaldehyde(HCHO).Among these,KHCO3-precipitated Co3O4(KHCO3-Co) was the most active low-temperature catalyst,and was able to completely oxidize HCHO at the 100-ppm level to CO2 at 90℃.In situ diffuse reflectance infrared spectroscopy demonstrated that hydroxyl groups on the catalyst surface were regenerated by K~+ and CO3^(2-),thus promoting the oxidation of HCHO.Moreover,H2-temperature programmed reduction and X-ray photoelectron spectroscopy showed that employing KHCO3 as the precipitant increased the Co^3+/Co^2+molar ratio on the surface of the Co3O4 catalyst,thus further promoting oxidation.Structural characterization revealed that catalysts precipitated with carbonate or bicarbonate reagents exhibited greater specific surface areas and pore volumes.Overall,these data suggest that the high activity observed during the Co3O4 catalyzed oxidation of HCHO can be primarily attributed to the presence of K~+ and CO3^(2-) on the Co3O4 surface and the favorable Co^3+/Co^2+ ratio.展开更多
The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the ...The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the effect of concentration and co-crystallization was investigated in copper electrolyte. The results indicate that reduction rate of arsenic (V) decreases with increasing temperature and H2SO4 concentration, but increases with increasing SO2 flow rate and reaction time, and it can reach 92% under appropriate conditions that reaction temperature is 65 °C, H2SO4 concentration is 203 g/L, CuSO4 concentration is 80 g/L, reaction time is 2 h and SO2 gas flow rate is 200 mL/min. To remove arsenic in the copper electrolyte, arsenic (V) is reduced to trivalence under the appropriate conditions, the copper electrolyte is concentrated till H2SO4 concentration reaches 645 g/L, and then the removal rates of As, Cu, Sb and Bi reach 83.9%, 87.1%, 21.0% and 84.7%. The XRD analysis shows that crystallized product obtained contains As2O3 and CuSO4·5H2O.展开更多
Digesting aluminum-bearing minerals and converting ferric oxide to magnetite simultaneously in Bayer digestion process is crucially important to deal with high-iron diasporic bauxite economically for alumina productio...Digesting aluminum-bearing minerals and converting ferric oxide to magnetite simultaneously in Bayer digestion process is crucially important to deal with high-iron diasporic bauxite economically for alumina production.The reaction behaviors of hydrothermal reduction of ferric oxide in alkali solution were studied by both thermodynamic calculation and experimental investigation.The thermodynamic calculation indicates that Fe3O4 can be formed by the conversion of Fe2O3 at proper redox potentials in alkaline solution.The experimental results show that the formation ratio of Fe3O4 either through the reaction of Fe and Fe2O3 or through the reaction of Fe and H2O in alkaline aqueous solution increases remarkably with raising the temperature and alkali concentration,suggesting that Fe(OH)3- and Fe(OH)4- form by dissolving Fe and Fe2O3,respectively,in alkaline aqueous solution and further react to form Fe3O4.Moreover,aluminate ions have little influence on the hydrothermal reduction of Fe2O3 in alkaline aqueous solution,and converting iron minerals to magnetite can be realized in the Bayer digestion process of diasporic bauxite.展开更多
Aim An industrial enzyme β-glucanase was used to transfortn notoginsenoside Fe for the first time. Methods Notoginsenoside Fe was isolated from the leave saponin of Panax notoginseng (Burk.) Chen FH. The enzymatica...Aim An industrial enzyme β-glucanase was used to transfortn notoginsenoside Fe for the first time. Methods Notoginsenoside Fe was isolated from the leave saponin of Panax notoginseng (Burk.) Chen FH. The enzymatically transformed compounds were detected by HPLC and two transformed compounds were identified as 20 (S) -protopanaxadiol-20- O- α-L-arabinofuranosyl ( 1→6 ) - β-gluco- pyranoside, ginsenoside-Mc) and 20(S)-protopanaxadiol-20-O-β-D-glucopyranoside compound-K (C-K) respectively on the basis of their ^1H NMR and ^13 C NMR spectral data. Results Based on the enzymolytic kinetic curve, the transformation rate of notoginsenoside Fe reached 95% after 24 h. Conclusion The enzymatic transformation pathway of notoginsenoside Fe by β-glucanase has been proposed as notoginsenoside Fe→ginsenoside Mc→C-K.展开更多
Using the molten salt and polyvinyl alcohol-protected reduction method,we fabricated Co3O4 octahedron-supported Au-Pd(x(AuPdy)/Co3O4;x =(0.18,0.47,and 0.96) wt%;y(Pd/Au molar ratio) =1.85-1.97) nanocatalysts.T...Using the molten salt and polyvinyl alcohol-protected reduction method,we fabricated Co3O4 octahedron-supported Au-Pd(x(AuPdy)/Co3O4;x =(0.18,0.47,and 0.96) wt%;y(Pd/Au molar ratio) =1.85-1.97) nanocatalysts.The molten salt-derived Co3O4 sample possessed well-defined octahedral morphology,with an edge length of 300 nm.The Au-Pd nanoparticles,with sizes of 2.7-3.2 nm,were uniformly dispersed on the surface of Co3O4.The 0.96(AuPd1.92)/Co3O4 sample showed the highest catalytic activity for toluene and o-xylene oxidation,and the temperature required for achieving 90%conversion of toluene and o-xylene was 180 and 187 ℃,respectively,at a space velocity of 40000 mL/(g·h).The high catalytic performance of Co3O4 octahedron-supported Au-Pd nanocatalysts was associated with the interaction between Au-Pd nanoparticles and Co3O4 and high concentration of adsorbed oxygen species.展开更多
Nanocrystalline,single-phase undoped In 2O 3 was prepared by a polymer-network synthesis technique with indium nitrate as the starting material;several methods such as X-ray diffractometry (XRD) and transmission ele...Nanocrystalline,single-phase undoped In 2O 3 was prepared by a polymer-network synthesis technique with indium nitrate as the starting material;several methods such as X-ray diffractometry (XRD) and transmission electron microscopy (TEM) were employed to obtain detailed information on the crystallography and microstructual appearance of In 2O 3 superfine powders. The influence of the concentration of starting solution,calcination temperature and time on the particle size was also that investigated by means of the XRD patterns. Results indicate that the obtained powders are mostly crystalline single phase with uniform size and also that the size of the products can be controlled under proper condition.展开更多
For the low-grade gibbsitic bauxite,the leaching rate of alumina is very low during the Bayer process.The acid leaching method is attracting more attention,and the hydrochloric acid leaching was developed rapidly.The ...For the low-grade gibbsitic bauxite,the leaching rate of alumina is very low during the Bayer process.The acid leaching method is attracting more attention,and the hydrochloric acid leaching was developed rapidly.The mineral composition and chemical composition were investigated by X-ray diffraction analysis and semi-quantitative analysis.The thermodynamics of leaching process was analyzed.The results show that the major minerals in the bauxite are gibbsite,secondly goethite and quartz,anatase and so on.The acid leaching reactions of the bauxite would be thermodynamically easy and completed.Under the conditions that ore granularity is less than-55 μm,the L/S ratio is 100:7,and the leaching temperature is 373-383 K,the leaching time is 120 min and the concentration of HCl is 10%,both the leaching rates of Al and Fe are over 95%.The main composition of leaching slag is SiO2 which is easy for comprehensive utilization.展开更多
The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (C...The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications.展开更多
New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH...New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively.展开更多
基金supported by the Na-tional Natural Science Foundation of China(No.52272369).
文摘Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.
基金Supported by Key Laboratory of Financial Mathematics of Fujian Province University(Putian University)(JR202203)the NSF of Anhui Province(2008085MA06).
文摘In this paper,we study reduced rings in which every element is a sum of three tripotents that commute,and determine the integral domains over which every n£n matrix is a sum of three tripotents.It is proved that for an integral domain R,every matrix in M_(n)(R)is a sum of three tripotents if and only if R■Zp with p=2,3,5 or 7.
基金supported by the National Natural Science Foundation of China(51306034)Key Research&Development Projects of Jiangsu Province(BE2015677)the National Basic Research Program of China(2013CB228505)~~
文摘V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2.
基金Project (2012BAC12B01) supported by the National Key Technologies R&D Program of ChinaProject (2012FJ1010) supported by Science and Technology Major Project of Hunan Province,China
文摘The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was proposed according to the mode of occurrence of arsenic in the slag and its amphoteric characteristic.The leaching experiments were conducted in the alkaline aqueous medium,with bubbling of oxygen into the solution,and the optimal conditions for leaching arsenic were determined.The results showed that the extraction rate of arsenic was maximized at 99.10%under the optimal conditions of temperature 140 ℃,NaOH concentration 150 g/L,oxygen partial pressure 0.5 MPa,and a liquid-to-solid ratio 5:1.Based on the solubilities of As2O5,ZnO and PbO in NaOH solution at 25 ℃,a method for the separation of As in the form of sodium arsenate salt from the arsenic-rich leachate via cooling crystallization was established,and the reaction medium could be fully recycled.The crystallization rate was confirmed to reach 88.9%(calculated on the basis of Na3AsO4) upon a direct cooling of the hot leachate down to room temperature.On the basis of redox potentials,the sodium arsenate solution could be further reduced by sulfur dioxide(SO2) gas to arsenite,at a reduction yield of 92%under the suitable conditions.Arsenic trioxide with regular octahedron shape could be prepared successfully from the reduced solution,and further recycled to the purification process to purify the zinc sulfate solution.Also,sodium arsenite solution obtained after the reduction of arsenate could be directly used to purify the zinc sulfate solution.Therefore,the technical scheme of alkaline leaching with pressured oxygen,cooling crystallization,arsenate reduction by SO2 gas,and arsenic trioxide preparation,provides an attractive approach to realize the resource utilization of arsenic-containing cobalt and nickel slag.
基金supported by the National Natural Science Foundation of China(31470434,21406090,21576124,21676124,21507047)the Project of Science and Technology Development Plan of Taicang(TC2015NY05)~~
文摘A stable PNIPAM/Fe_3O_4/g-C_3N_4 composite photocatalyst was designed and prepared by a thermal photoinitiation technology.The structure and properties of the materials were characterized and the composite photocatalyst was found to show good stability for tetracycline degradation.The sample not only retained the magnetic properties of Fe_3O_4,allowing it to be recycled,but its photocatalytic properties could also be changed by controlling the temperature of the reaction system.The degradation intermediate products of tetracycline were further investigated by MS.This work provides a new facile strategy for the development of intelligent and recyclable photocatalytic materials.
基金supported by the National Natural Science Foundation of China(21577088)~~
文摘Co3O4 catalysts prepared with different precipitants(NH3·H2O,KOH,NH4HCO3,K2CO3 and KHCO3)were investigated for the oxidation of formaldehyde(HCHO).Among these,KHCO3-precipitated Co3O4(KHCO3-Co) was the most active low-temperature catalyst,and was able to completely oxidize HCHO at the 100-ppm level to CO2 at 90℃.In situ diffuse reflectance infrared spectroscopy demonstrated that hydroxyl groups on the catalyst surface were regenerated by K~+ and CO3^(2-),thus promoting the oxidation of HCHO.Moreover,H2-temperature programmed reduction and X-ray photoelectron spectroscopy showed that employing KHCO3 as the precipitant increased the Co^3+/Co^2+molar ratio on the surface of the Co3O4 catalyst,thus further promoting oxidation.Structural characterization revealed that catalysts precipitated with carbonate or bicarbonate reagents exhibited greater specific surface areas and pore volumes.Overall,these data suggest that the high activity observed during the Co3O4 catalyzed oxidation of HCHO can be primarily attributed to the presence of K~+ and CO3^(2-) on the Co3O4 surface and the favorable Co^3+/Co^2+ ratio.
文摘The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the effect of concentration and co-crystallization was investigated in copper electrolyte. The results indicate that reduction rate of arsenic (V) decreases with increasing temperature and H2SO4 concentration, but increases with increasing SO2 flow rate and reaction time, and it can reach 92% under appropriate conditions that reaction temperature is 65 °C, H2SO4 concentration is 203 g/L, CuSO4 concentration is 80 g/L, reaction time is 2 h and SO2 gas flow rate is 200 mL/min. To remove arsenic in the copper electrolyte, arsenic (V) is reduced to trivalence under the appropriate conditions, the copper electrolyte is concentrated till H2SO4 concentration reaches 645 g/L, and then the removal rates of As, Cu, Sb and Bi reach 83.9%, 87.1%, 21.0% and 84.7%. The XRD analysis shows that crystallized product obtained contains As2O3 and CuSO4·5H2O.
基金Project(51374239)supported by the National Natural Science Foundation of China
文摘Digesting aluminum-bearing minerals and converting ferric oxide to magnetite simultaneously in Bayer digestion process is crucially important to deal with high-iron diasporic bauxite economically for alumina production.The reaction behaviors of hydrothermal reduction of ferric oxide in alkali solution were studied by both thermodynamic calculation and experimental investigation.The thermodynamic calculation indicates that Fe3O4 can be formed by the conversion of Fe2O3 at proper redox potentials in alkaline solution.The experimental results show that the formation ratio of Fe3O4 either through the reaction of Fe and Fe2O3 or through the reaction of Fe and H2O in alkaline aqueous solution increases remarkably with raising the temperature and alkali concentration,suggesting that Fe(OH)3- and Fe(OH)4- form by dissolving Fe and Fe2O3,respectively,in alkaline aqueous solution and further react to form Fe3O4.Moreover,aluminate ions have little influence on the hydrothermal reduction of Fe2O3 in alkaline aqueous solution,and converting iron minerals to magnetite can be realized in the Bayer digestion process of diasporic bauxite.
文摘Aim An industrial enzyme β-glucanase was used to transfortn notoginsenoside Fe for the first time. Methods Notoginsenoside Fe was isolated from the leave saponin of Panax notoginseng (Burk.) Chen FH. The enzymatically transformed compounds were detected by HPLC and two transformed compounds were identified as 20 (S) -protopanaxadiol-20- O- α-L-arabinofuranosyl ( 1→6 ) - β-gluco- pyranoside, ginsenoside-Mc) and 20(S)-protopanaxadiol-20-O-β-D-glucopyranoside compound-K (C-K) respectively on the basis of their ^1H NMR and ^13 C NMR spectral data. Results Based on the enzymolytic kinetic curve, the transformation rate of notoginsenoside Fe reached 95% after 24 h. Conclusion The enzymatic transformation pathway of notoginsenoside Fe by β-glucanase has been proposed as notoginsenoside Fe→ginsenoside Mc→C-K.
基金supported by the National Natural Science Foundation of China (21377008, 21477005, U1507108)National High Technology Re-search and Development Program of China (2015AA034603)+1 种基金Beijing Nova Program (Z141109001814106)Natural Science Foundation of Bei-jing Municipal Commission of Education (KM201410005008)~~
文摘Using the molten salt and polyvinyl alcohol-protected reduction method,we fabricated Co3O4 octahedron-supported Au-Pd(x(AuPdy)/Co3O4;x =(0.18,0.47,and 0.96) wt%;y(Pd/Au molar ratio) =1.85-1.97) nanocatalysts.The molten salt-derived Co3O4 sample possessed well-defined octahedral morphology,with an edge length of 300 nm.The Au-Pd nanoparticles,with sizes of 2.7-3.2 nm,were uniformly dispersed on the surface of Co3O4.The 0.96(AuPd1.92)/Co3O4 sample showed the highest catalytic activity for toluene and o-xylene oxidation,and the temperature required for achieving 90%conversion of toluene and o-xylene was 180 and 187 ℃,respectively,at a space velocity of 40000 mL/(g·h).The high catalytic performance of Co3O4 octahedron-supported Au-Pd nanocatalysts was associated with the interaction between Au-Pd nanoparticles and Co3O4 and high concentration of adsorbed oxygen species.
基金TheScientificResearchFoundationfortheReturnedOverseasChineseScholars ,StateEducationMinistry (No . [2 0 0 2 ]2 47)
文摘Nanocrystalline,single-phase undoped In 2O 3 was prepared by a polymer-network synthesis technique with indium nitrate as the starting material;several methods such as X-ray diffractometry (XRD) and transmission electron microscopy (TEM) were employed to obtain detailed information on the crystallography and microstructual appearance of In 2O 3 superfine powders. The influence of the concentration of starting solution,calcination temperature and time on the particle size was also that investigated by means of the XRD patterns. Results indicate that the obtained powders are mostly crystalline single phase with uniform size and also that the size of the products can be controlled under proper condition.
基金Projects(50974035,51074047,51004033) supported by the National Natural Science Foundation of ChinaProject(2008BAB34B01) supported by the National Science and Technology Pillar Program of China during the Eleventh Five-Year Plan Period+1 种基金Project (N100302005) supported by the National Higher-education Institution General Research and Development Funding,ChinaProject (2010AA03A405) supported by the Hi-tech Research and Development Program of China
文摘For the low-grade gibbsitic bauxite,the leaching rate of alumina is very low during the Bayer process.The acid leaching method is attracting more attention,and the hydrochloric acid leaching was developed rapidly.The mineral composition and chemical composition were investigated by X-ray diffraction analysis and semi-quantitative analysis.The thermodynamics of leaching process was analyzed.The results show that the major minerals in the bauxite are gibbsite,secondly goethite and quartz,anatase and so on.The acid leaching reactions of the bauxite would be thermodynamically easy and completed.Under the conditions that ore granularity is less than-55 μm,the L/S ratio is 100:7,and the leaching temperature is 373-383 K,the leaching time is 120 min and the concentration of HCl is 10%,both the leaching rates of Al and Fe are over 95%.The main composition of leaching slag is SiO2 which is easy for comprehensive utilization.
基金supported by the National Natural Science Foundation of China(21373042)~~
文摘The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications.
文摘New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively.