By mRNA differential display from control versus NaCl_shocked Arabidopsis seedlings, we screened an Arabidopsis 3′ partial cDNA, which represents a gene encoding inositol 1,3,4_trisphosphate (Ins(1,3,4)P ...By mRNA differential display from control versus NaCl_shocked Arabidopsis seedlings, we screened an Arabidopsis 3′ partial cDNA, which represents a gene encoding inositol 1,3,4_trisphosphate (Ins(1,3,4)P 3) 5/6_kinase_like protein. Northern blotting analysis showed that the gene, named as AtITL1, is strongly induced by NaCl and low temperature, but not induced by drought and abscisic acid (ABA). Analysis of 5′ region of the AtITL1 found that there are dehydration_responsive element/C_repeat (DRE/CRT) cis _acting elements, but no elements related to G_box and ABRE (ABA_responsive element) in its 5′ region, which is consistent with the expression patterns of the AtITL1 independent of ABA. These results suggest that the AtITL1 may be involved in the osmotic stress response pathway independent of ABA.展开更多
For classifying unknown 3-D objects into a set of predetermined object classes, a part-level object classification method based on the improved interpretation tree is presented. The part-level representation is implem...For classifying unknown 3-D objects into a set of predetermined object classes, a part-level object classification method based on the improved interpretation tree is presented. The part-level representation is implemented, which enables a more compact shape description of 3-D objects. The proposed classification method consists of two key processing stages: the improved constrained search on an interpretation tree and the following shape similarity measure computation. By the classification method, both whole match and partial match with shape similarity ranks are achieved; especially, focus match can be accomplished, where different key parts may be labeled and all the matched models containing corresponding key parts may be obtained. A series of experiments show the effectiveness of the presented 3-D object classification method.展开更多
Based on previous research results, this paper investigated the influence of fracture morphology on mechanical properties and failure modes of rock mass with two diagonal intersected fractures. This study carried out ...Based on previous research results, this paper investigated the influence of fracture morphology on mechanical properties and failure modes of rock mass with two diagonal intersected fractures. This study carried out a series of triaxial compression tests on rock-like specimens with two crossed fractures under negative temperature, concluded the following conclusions. The strength and failure modes of rock mass are significantly influenced by the dips of two crossed fractures. The strength of rock mass with two frac- tures cannot simply be estimated using the method that was developed for the rock mass with a single fracture. When the intersecting angle is less than 30~, the failure plane initiates at the tip of "artificial rup- tures" and extends to the upper and lower ends of the specimen. In case of a higher dip and intersecting angle ranging from 30° to 60°, the failure plane propagates along one of these two fractures. The mechan- lca! parameters of rock mass are not only related to the trace length, but also depend on the trace !ength ratio. One could roughly calculate the strength parameters using the approximation proposed in.this paper..For the rock mass with a trace length ratio 〈0.3 (short trace length/long trace length), the failure mode is dependent on the fracture with a longer trace length. When the trace length becomes significant and the trace length ratio approximates to 1, the failure plane propagates along two fractures, where an X-shaped.failure pattern is presented: For the rock mass with moderate frac!ures and a trace length ratio of approxlmately 1, the failure mode Is.Independent on fractures, which is simllar to .the damage pattern of intact rock. The strength, and elastic .modulus of rock mass decrease with the increase of spacing between fractures, whl!e Polsson's ratio is Independent on the spacing. The failure mode can be deter- mined by the area. of triangle created by two fractures. Damage occurs at the smaller triangle area first, and propagates with the two sides of the larger triangle.展开更多
We investigate the dynamics of resonant Raman scattering in the course of the frequency de- tuning. The dephasing in the time domain makes the scattering fast when the photon energy is tuned from the absorption resona...We investigate the dynamics of resonant Raman scattering in the course of the frequency de- tuning. The dephasing in the time domain makes the scattering fast when the photon energy is tuned from the absorption resonance. This makes frequency detuning to act as a camera shutter with a regulated scattering duration and provides a practical tool of controlling the scattering time in ordinary stationary measurements. The theory is applied to resonant Raman spectra of a couple of few-mode model systems and to trans-1,3,5-hexatriene and guanine-cytosine (G-C) Watson-Crick base pairs (DNA) molecules. Besides some particular physical effects, the regime of fast scattering leads to a simplification of the spectrum as well as to the scattering theory itself. Strong overtones appear in the Raman spectra when the photon frequency is tuned in the resonant region, while in the mode of fast scattering, the overtones are gradually quenched when the photon frequency is tuned more than one vibra- tional quantum below the first absorption resonance. The detuning from the resonant region thus leads to a strong purification of the Raman spectrum from the contamination by higher overtones and soft modes and purifies the spectrum also in terms of avoidance of dissociation and interfering fluorescence decay of the resonant state. This makes frequency detuning a very useful practical tool in the analysis of the resonant Raman spectra of complex systems and considerably improves the prospects for using the Raman effect for detection of foreign substances at ultra-low concentrations.展开更多
Spatial distribution of soil salinity can be estimated based on its environmental factors because soil salinity is strongly affected and indicated by environmental factors. Different with other properties such as soil...Spatial distribution of soil salinity can be estimated based on its environmental factors because soil salinity is strongly affected and indicated by environmental factors. Different with other properties such as soil texture, soil salinity varies with short-term time. Thus, how to choose powerful environmental predictors is especially important for soil salinity. This paper presents a similarity-based prediction approach to map soil salinity and detects powerful environmental predictors for the Huanghe(Yellow) River Delta area in China. The similarity-based approach predicts the soil salinities of unsampled locations based on the environmental similarity between unsampled and sampled locations. A dataset of 92 points with salt data at depth of 30–40 cm was divided into two subsets for prediction and validation. Topographical parameters, soil textures, distances to irrigation channels and to the coastline, land surface temperature from Moderate Resolution Imaging Spectroradiometer(MODIS), Normalized Difference Vegetation Indices(NDVIs) and land surface reflectance data from Landsat Thematic Mapper(TM) imagery were generated. The similarity-based prediction approach was applied on several combinations of different environmental factors. Based on three evaluation indices including the correlation coefficient(CC) between observed and predicted values, the mean absolute error and the root mean squared error we found that elevation, distance to irrigation channels, soil texture, night land surface temperature, NDVI, and land surface reflectance Band 5 are the optimal combination for mapping soil salinity at the 30–40 cm depth in the study area(with a CC value of 0.69 and a root mean squared error value of 0.38). Our results indicated that the similarity-based prediction approach could be a vital alternative to other methods for mapping soil salinity, especially for area with limited observation data and could be used to monitor soil salinity distributions in the future.展开更多
文摘By mRNA differential display from control versus NaCl_shocked Arabidopsis seedlings, we screened an Arabidopsis 3′ partial cDNA, which represents a gene encoding inositol 1,3,4_trisphosphate (Ins(1,3,4)P 3) 5/6_kinase_like protein. Northern blotting analysis showed that the gene, named as AtITL1, is strongly induced by NaCl and low temperature, but not induced by drought and abscisic acid (ABA). Analysis of 5′ region of the AtITL1 found that there are dehydration_responsive element/C_repeat (DRE/CRT) cis _acting elements, but no elements related to G_box and ABRE (ABA_responsive element) in its 5′ region, which is consistent with the expression patterns of the AtITL1 independent of ABA. These results suggest that the AtITL1 may be involved in the osmotic stress response pathway independent of ABA.
基金The National Basic Research Program of China(973Program)(No2006CB303105)the Research Foundation of Bei-jing Jiaotong University (NoK06J0170)
文摘For classifying unknown 3-D objects into a set of predetermined object classes, a part-level object classification method based on the improved interpretation tree is presented. The part-level representation is implemented, which enables a more compact shape description of 3-D objects. The proposed classification method consists of two key processing stages: the improved constrained search on an interpretation tree and the following shape similarity measure computation. By the classification method, both whole match and partial match with shape similarity ranks are achieved; especially, focus match can be accomplished, where different key parts may be labeled and all the matched models containing corresponding key parts may be obtained. A series of experiments show the effectiveness of the presented 3-D object classification method.
文摘Based on previous research results, this paper investigated the influence of fracture morphology on mechanical properties and failure modes of rock mass with two diagonal intersected fractures. This study carried out a series of triaxial compression tests on rock-like specimens with two crossed fractures under negative temperature, concluded the following conclusions. The strength and failure modes of rock mass are significantly influenced by the dips of two crossed fractures. The strength of rock mass with two frac- tures cannot simply be estimated using the method that was developed for the rock mass with a single fracture. When the intersecting angle is less than 30~, the failure plane initiates at the tip of "artificial rup- tures" and extends to the upper and lower ends of the specimen. In case of a higher dip and intersecting angle ranging from 30° to 60°, the failure plane propagates along one of these two fractures. The mechan- lca! parameters of rock mass are not only related to the trace length, but also depend on the trace !ength ratio. One could roughly calculate the strength parameters using the approximation proposed in.this paper..For the rock mass with a trace length ratio 〈0.3 (short trace length/long trace length), the failure mode is dependent on the fracture with a longer trace length. When the trace length becomes significant and the trace length ratio approximates to 1, the failure plane propagates along two fractures, where an X-shaped.failure pattern is presented: For the rock mass with moderate frac!ures and a trace length ratio of approxlmately 1, the failure mode Is.Independent on fractures, which is simllar to .the damage pattern of intact rock. The strength, and elastic .modulus of rock mass decrease with the increase of spacing between fractures, whl!e Polsson's ratio is Independent on the spacing. The failure mode can be deter- mined by the area. of triangle created by two fractures. Damage occurs at the smaller triangle area first, and propagates with the two sides of the larger triangle.
文摘We investigate the dynamics of resonant Raman scattering in the course of the frequency de- tuning. The dephasing in the time domain makes the scattering fast when the photon energy is tuned from the absorption resonance. This makes frequency detuning to act as a camera shutter with a regulated scattering duration and provides a practical tool of controlling the scattering time in ordinary stationary measurements. The theory is applied to resonant Raman spectra of a couple of few-mode model systems and to trans-1,3,5-hexatriene and guanine-cytosine (G-C) Watson-Crick base pairs (DNA) molecules. Besides some particular physical effects, the regime of fast scattering leads to a simplification of the spectrum as well as to the scattering theory itself. Strong overtones appear in the Raman spectra when the photon frequency is tuned in the resonant region, while in the mode of fast scattering, the overtones are gradually quenched when the photon frequency is tuned more than one vibra- tional quantum below the first absorption resonance. The detuning from the resonant region thus leads to a strong purification of the Raman spectrum from the contamination by higher overtones and soft modes and purifies the spectrum also in terms of avoidance of dissociation and interfering fluorescence decay of the resonant state. This makes frequency detuning a very useful practical tool in the analysis of the resonant Raman spectra of complex systems and considerably improves the prospects for using the Raman effect for detection of foreign substances at ultra-low concentrations.
基金Under the auspices of Special Fund for Ocean Public Welfare Profession Scientific Research(No.201105020)National Natural Science Foundation of China(No.41471178,41023010,41431177)National Key Technology Innovation Project for Water Pollution Control and Remediation(No.2013ZX07103006)
文摘Spatial distribution of soil salinity can be estimated based on its environmental factors because soil salinity is strongly affected and indicated by environmental factors. Different with other properties such as soil texture, soil salinity varies with short-term time. Thus, how to choose powerful environmental predictors is especially important for soil salinity. This paper presents a similarity-based prediction approach to map soil salinity and detects powerful environmental predictors for the Huanghe(Yellow) River Delta area in China. The similarity-based approach predicts the soil salinities of unsampled locations based on the environmental similarity between unsampled and sampled locations. A dataset of 92 points with salt data at depth of 30–40 cm was divided into two subsets for prediction and validation. Topographical parameters, soil textures, distances to irrigation channels and to the coastline, land surface temperature from Moderate Resolution Imaging Spectroradiometer(MODIS), Normalized Difference Vegetation Indices(NDVIs) and land surface reflectance data from Landsat Thematic Mapper(TM) imagery were generated. The similarity-based prediction approach was applied on several combinations of different environmental factors. Based on three evaluation indices including the correlation coefficient(CC) between observed and predicted values, the mean absolute error and the root mean squared error we found that elevation, distance to irrigation channels, soil texture, night land surface temperature, NDVI, and land surface reflectance Band 5 are the optimal combination for mapping soil salinity at the 30–40 cm depth in the study area(with a CC value of 0.69 and a root mean squared error value of 0.38). Our results indicated that the similarity-based prediction approach could be a vital alternative to other methods for mapping soil salinity, especially for area with limited observation data and could be used to monitor soil salinity distributions in the future.