The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication...The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication from two aspects of the limitations of current indoor positioning technology and the advantages of visible light communication was discussed; And then, the main four technology of indoor positioning based on visible light communication were summarized and the triangulation of RSS method and the principle of image positioning were introduced in detail; Next, the performance characteristics of various typical algorithms were compared and analyzed; In the end, several suggestions on future research of indoor positioning based on visible light communication were given.展开更多
The fast development of next-generation sequencing technology presents a major computational challenge for data processing and analysis.A fast algorithm,de Bruijn graph has been successfully used for genome DNA de nov...The fast development of next-generation sequencing technology presents a major computational challenge for data processing and analysis.A fast algorithm,de Bruijn graph has been successfully used for genome DNA de novo assembly;nevertheless,its performance for transcriptome assembly is unclear.In this study,we used both simulated and real RNA-Seq data,from either artificial RNA templates or human transcripts,to evaluate five de novo assemblers,ABySS,Mira,Trinity,Velvet and Oases.Of these assemblers,ABySS,Trinity,Velvet and Oases are all based on de Bruijn graph,and Mira uses an overlap graph algorithm.Various numbers of RNA short reads were selected from the External RNA Control Consortium(ERCC) data and human chromosome 22.A number of statistics were then calculated for the resulting contigs from each assembler.Each experiment was repeated multiple times to obtain the mean statistics and standard error estimate.Trinity had relative good performance for both ERCC and human data,but it may not consistently generate full length transcripts.ABySS was the fastest method but its assembly quality was low.Mira gave a good rate for mapping its contigs onto human chromosome 22,but its computational speed is not satisfactory.Our results suggest that transcript assembly remains a challenge problem for bioinformatics society.Therefore,a novel assembler is in need for assembling transcriptome data generated by next generation sequencing technique.展开更多
基金supported by National Nature Science Foundation of China (No. 61373124)supported by China Scholarship Funds (2014CB3033)
文摘The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication from two aspects of the limitations of current indoor positioning technology and the advantages of visible light communication was discussed; And then, the main four technology of indoor positioning based on visible light communication were summarized and the triangulation of RSS method and the principle of image positioning were introduced in detail; Next, the performance characteristics of various typical algorithms were compared and analyzed; In the end, several suggestions on future research of indoor positioning based on visible light communication were given.
基金supported by grants from the National Center for Research Resources (5P20RR016471-12)the National Institute of General Medical Sciences (8 P20 GM103442-12) from the National Institutes of Healththe seed collaborative research grant from the Odegard School of Aerospace Sciences and the School of Medicine and Health Sciences at University of North Dakota
文摘The fast development of next-generation sequencing technology presents a major computational challenge for data processing and analysis.A fast algorithm,de Bruijn graph has been successfully used for genome DNA de novo assembly;nevertheless,its performance for transcriptome assembly is unclear.In this study,we used both simulated and real RNA-Seq data,from either artificial RNA templates or human transcripts,to evaluate five de novo assemblers,ABySS,Mira,Trinity,Velvet and Oases.Of these assemblers,ABySS,Trinity,Velvet and Oases are all based on de Bruijn graph,and Mira uses an overlap graph algorithm.Various numbers of RNA short reads were selected from the External RNA Control Consortium(ERCC) data and human chromosome 22.A number of statistics were then calculated for the resulting contigs from each assembler.Each experiment was repeated multiple times to obtain the mean statistics and standard error estimate.Trinity had relative good performance for both ERCC and human data,but it may not consistently generate full length transcripts.ABySS was the fastest method but its assembly quality was low.Mira gave a good rate for mapping its contigs onto human chromosome 22,but its computational speed is not satisfactory.Our results suggest that transcript assembly remains a challenge problem for bioinformatics society.Therefore,a novel assembler is in need for assembling transcriptome data generated by next generation sequencing technique.