An array of 13 detector telescopes has been used for detecting small-angle particle-particle correlations in the reactions ^40Ar^+112,124Sn at 30 MeV/u. The α-α correlation functions were extracted from two-particle...An array of 13 detector telescopes has been used for detecting small-angle particle-particle correlations in the reactions ^40Ar^+112,124Sn at 30 MeV/u. The α-α correlation functions were extracted from two-particle coincident events. A three-body trajectory code MENEKA was used to calculate the background correlation function. The detection efficiency was calculated by using the Monte-Carlo method.展开更多
Periodic orbits are fundamental keys to understand the dynamical system of circular restricted three-body problem, and they play important roles in practical deep-space exploration. Current methods of periodic orbit c...Periodic orbits are fundamental keys to understand the dynamical system of circular restricted three-body problem, and they play important roles in practical deep-space exploration. Current methods of periodic orbit computation need a high-order analytical approximate solution to start the iteration process, thus making the computation complicated and limiting the types of periodic orbits that can be obtained. By utilizing the symmetry of the restricted three-body problem, a special kind of flow function is constructed, so as to map a state on the plane of symmetry to another state that also lies in this plane. Based on this flow function, a new method of periodic orbit computation is derived. This method needs neither a starting analytic approximation nor the state transition matrix to be computed, so it can be conveniently implemented on a computer. Besides, this method is unaffected by the nonlinearity of the dynamical system, allowing a large set of periodic orbits which have x-z plane symmetry to be computed numerically. As examples, some planar periodic orbits (e.g. Lyapunov orbit) and spatial periodic orbits (e.g. Halo orbit) are computed. By further combining with a differential correction process, the method introduced here can be used to design resonant orbits that can jump between different resonant frequencies. One such resonant orbit is given in this paper, verifying the efficiency of this method.展开更多
Currently,the fifteen new periodic orbits of Newtonian three-body problem with equal mass were found by Suvakov and Dmitra sinovi[Phys Rev Lett,2013,110:114301]using the gradient descent method with double precision.I...Currently,the fifteen new periodic orbits of Newtonian three-body problem with equal mass were found by Suvakov and Dmitra sinovi[Phys Rev Lett,2013,110:114301]using the gradient descent method with double precision.In this paper,these reported orbits are checked stringently by means of a reliable numerical approach(namely the"Clean Numerical Simulation",CNS),which is based on the arbitrary-order Taylor series method and data in arbitrary-digit precision with a procedure of solution verification.It is found that seven among these fifteen orbits greatly depart from the periodic ones within a long enough interval of time,and are thus most possibly unstable at least.It is suggested to carefully check whether or not these seven unstable orbits are the so-called"computational periodicity"mentioned by Lorenz in 2006.This work also illustrates the validity and great potential of the CNS for chaotic dynamic systems.展开更多
The famous three-body problem can be traced back to Isaac Newton in the 1680 s. In the 300 years since this "three-body problem"was first recognized, only three families of periodic solutions had been found,...The famous three-body problem can be traced back to Isaac Newton in the 1680 s. In the 300 years since this "three-body problem"was first recognized, only three families of periodic solutions had been found, until 2013 when ˇSuvakov and Dmitraˇsinovi′c [Phys.Rev. Lett. 110, 114301(2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found by Moore in 1993, the 11 families found by ˇSuvakov and Dmitraˇsinovi′c in 2013, and more than 600 new families that have never been reported, to the best of our knowledge. With the definition of the average period T = T=Lf, where Lf is the length of the so-called "free group element", these 695 families suggest that there should exist the quasi Kepler's third law T* ≈ 2:433 ± 0:075 for the considered case, where T*= T|E|^(3/2) is the scale-invariant average period and E is its total kinetic and potential energy,respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the "shape sphere"can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.展开更多
Using variational minimizing methods,we prove the existence of the odd symmetric parabolic or hyperbolic orbit for the restricted 3-body problems with weak forces.
文摘An array of 13 detector telescopes has been used for detecting small-angle particle-particle correlations in the reactions ^40Ar^+112,124Sn at 30 MeV/u. The α-α correlation functions were extracted from two-particle coincident events. A three-body trajectory code MENEKA was used to calculate the background correlation function. The detection efficiency was calculated by using the Monte-Carlo method.
基金supported by the National Natural Science Foundation of China (Grant No. 60575013)the National Basic Research Program of China (Grant No. G9KY1004)
文摘Periodic orbits are fundamental keys to understand the dynamical system of circular restricted three-body problem, and they play important roles in practical deep-space exploration. Current methods of periodic orbit computation need a high-order analytical approximate solution to start the iteration process, thus making the computation complicated and limiting the types of periodic orbits that can be obtained. By utilizing the symmetry of the restricted three-body problem, a special kind of flow function is constructed, so as to map a state on the plane of symmetry to another state that also lies in this plane. Based on this flow function, a new method of periodic orbit computation is derived. This method needs neither a starting analytic approximation nor the state transition matrix to be computed, so it can be conveniently implemented on a computer. Besides, this method is unaffected by the nonlinearity of the dynamical system, allowing a large set of periodic orbits which have x-z plane symmetry to be computed numerically. As examples, some planar periodic orbits (e.g. Lyapunov orbit) and spatial periodic orbits (e.g. Halo orbit) are computed. By further combining with a differential correction process, the method introduced here can be used to design resonant orbits that can jump between different resonant frequencies. One such resonant orbit is given in this paper, verifying the efficiency of this method.
基金supported by the National Natural Science Foundation of China (Grant No.11272209)the Deanship of Scientific Research (DSR),King Abdulaziz University (KAU) (Grant No.37-130-35-HiCi)
文摘Currently,the fifteen new periodic orbits of Newtonian three-body problem with equal mass were found by Suvakov and Dmitra sinovi[Phys Rev Lett,2013,110:114301]using the gradient descent method with double precision.In this paper,these reported orbits are checked stringently by means of a reliable numerical approach(namely the"Clean Numerical Simulation",CNS),which is based on the arbitrary-order Taylor series method and data in arbitrary-digit precision with a procedure of solution verification.It is found that seven among these fifteen orbits greatly depart from the periodic ones within a long enough interval of time,and are thus most possibly unstable at least.It is suggested to carefully check whether or not these seven unstable orbits are the so-called"computational periodicity"mentioned by Lorenz in 2006.This work also illustrates the validity and great potential of the CNS for chaotic dynamic systems.
基金supported by the National Natural Science Foundation of China(Grant No.11432009)
文摘The famous three-body problem can be traced back to Isaac Newton in the 1680 s. In the 300 years since this "three-body problem"was first recognized, only three families of periodic solutions had been found, until 2013 when ˇSuvakov and Dmitraˇsinovi′c [Phys.Rev. Lett. 110, 114301(2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found by Moore in 1993, the 11 families found by ˇSuvakov and Dmitraˇsinovi′c in 2013, and more than 600 new families that have never been reported, to the best of our knowledge. With the definition of the average period T = T=Lf, where Lf is the length of the so-called "free group element", these 695 families suggest that there should exist the quasi Kepler's third law T* ≈ 2:433 ± 0:075 for the considered case, where T*= T|E|^(3/2) is the scale-invariant average period and E is its total kinetic and potential energy,respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the "shape sphere"can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.
基金supported by National Natural Science Foundation of China (Grant No. 11071175)a grant for advisor and PhD students from educational committee of China
文摘Using variational minimizing methods,we prove the existence of the odd symmetric parabolic or hyperbolic orbit for the restricted 3-body problems with weak forces.