For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the war...For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the warpage be- cause of their special shape. A new solution was suggested in this work. The strip-like plastic part was regarded as a little-curved beam macrnscopically, and was divided into a few one-dimensional elements. On the section of each elemental node location, two-dimensional thermal finite element analysis was made to obtain the non- uniform thermal stress caused by the time difference of the solidification of the plastic melt in the mold. The stress relaxation, or equivalently, strain creep was dealt with by using a special computing model. On the bases of in-mold elastic stress, the final bending moment to the beam was obtained and the warpage was predict- ed in good a^reement with practical cases.展开更多
The aim of this work is to propose a 3D FE model of a theoretical assembling straight bevel gear pair to analyze the contact fatigue on the tooth surface and the bending fatigue in the tooth root. Based on the cumulat...The aim of this work is to propose a 3D FE model of a theoretical assembling straight bevel gear pair to analyze the contact fatigue on the tooth surface and the bending fatigue in the tooth root. Based on the cumulative fatigue criterion and the stress-life equation, the key meshing states of the gear pair were investigated for the contact fatigue and the bending fatigue. Then, the reliability of the proposed model was proved by comparing the calculation result with the simulation result. Further study was performed to analyze the variation of the contact fatigue stress and the bending fatigue stress under different loads. Furthermore, the roles of the driving pinion and the driven gear pair were evaluated in the fatigue life of the straight bevel gear pair and the main fatigue failure mode was determined for the significant gear. The results show that the fatigue failure of the driving pinion is the main fatigue failure for the straight bevel gear pair and the bending fatigue failure is the main fatigue failure for the driving pinion.展开更多
In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with ...In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.展开更多
Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D...Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake.展开更多
Objective: To analyze the stress distribution of calcaneus with posterior articular facet compressed after fracture and talus during gait. Methods: A wedge under the posterior articular was transected from a normal fi...Objective: To analyze the stress distribution of calcaneus with posterior articular facet compressed after fracture and talus during gait. Methods: A wedge under the posterior articular was transected from a normal finite element model of calcaneus and talus to simulate malformation of compression of the posterior facet after fracture of calcaneus. The model was used to simulate for three subphases of the stance during the gait(heel strike, midstance, push off) and calculate the finite element. The results were compared with normal situation. Results: The stress distribution within the bone in situation of malformation was obtained and regions of elevated stresses for three subphases were located. The results were significantly different from that of normal situation. Conclusion: The simulation of calcaneus and talus in malformation has important clinic implication and can provide an insight into the factors contributing to many clinic pathogenic changes after fracture of calcaneus.展开更多
The majority of foot deformities are related to arch collapse or instability,especially the longitudinal arch.Although the relationship between the plantar fascia and arch height has been previously investigated,the s...The majority of foot deformities are related to arch collapse or instability,especially the longitudinal arch.Although the relationship between the plantar fascia and arch height has been previously investigated,the stress distribution remains unclear.The aim of this study was to explore the role of the plantar ligaments in foot arch biomechanics.We constructed a geometrical detailed three-dimensional (3-D) finite element (FE) model of the human foot and ankle from computer tomography images.The model comprised the majority of joints in the foot as well as bone segments,major ligaments,and plantar soft tissue.Release of the plantar fascia and other ligaments was simulated to evaluate the corresponding biomechanical effects on load distribution of the bony and ligamentous structures.These intrinsic ligaments of the foot arch were sectioned to simulate different pathologic situations of injury to the plantar ligaments,and to explore bone segment displacement and stress distribution.The validity of the 3-D FE model was verified by comparing results with experimentally measured data via the displacement and von Mise stress of each bone segment.Plantar fascia release decreased arch height,but did not cause total collapse of the foot arch.The longitudinal foot arch was lost when all the four major plantar ligaments were sectioned simultaneously.Plantar fascia release was compromised by increased strain applied to the plantar ligaments and intensified stress in the midfoot and metatarsal bones.Load redistribution among the centralized metatarsal bones and focal stress relief at the calcaneal insertion were predicted.The 3-D FE model indicated that plantar fascia release may provide relief of focal stress and associated heel pain.However,these operative procedures may pose a risk to arch stability and clinically may produce dorsolateral midfoot pain.The initial strategy for treating plantar fasciitis should be non-operative.展开更多
Elastic-plastic steel damper(EPSD) is a new device controlling seismic responses.The mechanical principle of EPSD was presented and a comparison was conducted between the theoretical formulas and finite element(FE) si...Elastic-plastic steel damper(EPSD) is a new device controlling seismic responses.The mechanical principle of EPSD was presented and a comparison was conducted between the theoretical formulas and finite element(FE) simulation of damper units.The verified force-displacement hysteretic curve of the damper system was obtained with reference to tests.The Nanjing Jiangxinzhou Bridge(NJB) was subsequently taken as the case to investigate the seismic response control effect of EPSDs on single-tower self-anchored suspension bridges.A 3-dimensional FE model of the bridge was established in ANSYS and the dynamic and static analyses of the bridge were conducted,the control effect of EPSDs under different seismic waves was further investigated through nonlinear time-history analysis based on the validated model.Results showed that both the simplified theoretical and FE simulation methods can preferable reflect the mechanical performance of EPSD,and that seismic responses of NJB with EPSDs are better than those with elastic connection device or fluid viscous damper.However,the control effect of EPSDs is influenced by seismic wave characteristics.展开更多
The finite element analysis(FEA) technology by hydraulic-mechanical-chemical-damage(HMCD) coupling is proposed in this paper for inclined wellbore stability analysis of water-sensitive and laminated rock, developed ba...The finite element analysis(FEA) technology by hydraulic-mechanical-chemical-damage(HMCD) coupling is proposed in this paper for inclined wellbore stability analysis of water-sensitive and laminated rock, developed basing on the recently established FEA technology for transversely isotropic rock with hydraulic-mechanical-damage(HMD) coupling. The chemical activity of the drilling fluid is considered as phenomenological hydration behavior, the moisture content and parameters of rock considering hydration could be determined with time. The finite element(FE) solutions of numerical wellbore model considering the chemical activity of drilling fluid, damage tensor calculation and weak plane strength criterion for transversely isotropic rock are developed for researching the wellbore failure characteristics and computing the time-dependent collapse and fracture pressure of laminated rock as shale reservoirs. A three-dimensional FE model and elastic solid deformation and seepage flow coupled equations are developed, and the damage tensor calculation technology for transversely isotropic rock are realized by introducing effect of the hydration and the stress state under the current load. The proposed method utilizing weak plane strength criterion fully reflects the strength parameters in rock matrix and weak plane. To the end, an effective and reliable numerically three-step FEA strategy is well established for wellbore stability analysis. Numerical examples are given to show that the proposed method can establish efficient and applicable FE model and be suitable for analyzing the timedependsolutions of pore pressure and stresses, and the evolution region considering the hydration surrounding wellbore,furthermore to compute the collapse cycling time and the safe mud weight for collapse and fracture pressure of transversely isotropic rock.展开更多
基金Supported by the Key Program of National Natural Science Foundation of China(11432003)the Key Research Project for Henan Universities(15A430009)
文摘For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the warpage be- cause of their special shape. A new solution was suggested in this work. The strip-like plastic part was regarded as a little-curved beam macrnscopically, and was divided into a few one-dimensional elements. On the section of each elemental node location, two-dimensional thermal finite element analysis was made to obtain the non- uniform thermal stress caused by the time difference of the solidification of the plastic melt in the mold. The stress relaxation, or equivalently, strain creep was dealt with by using a special computing model. On the bases of in-mold elastic stress, the final bending moment to the beam was obtained and the warpage was predict- ed in good a^reement with practical cases.
基金Project(51105287) supported by the National Natural Science Foundation of ChinaProject(2012BAA08003) supported by the Key Research and Development Project of New Products and New Technologies of Hubei Province, ChinaProject(2011-P05) supported by the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology,China
文摘The aim of this work is to propose a 3D FE model of a theoretical assembling straight bevel gear pair to analyze the contact fatigue on the tooth surface and the bending fatigue in the tooth root. Based on the cumulative fatigue criterion and the stress-life equation, the key meshing states of the gear pair were investigated for the contact fatigue and the bending fatigue. Then, the reliability of the proposed model was proved by comparing the calculation result with the simulation result. Further study was performed to analyze the variation of the contact fatigue stress and the bending fatigue stress under different loads. Furthermore, the roles of the driving pinion and the driven gear pair were evaluated in the fatigue life of the straight bevel gear pair and the main fatigue failure mode was determined for the significant gear. The results show that the fatigue failure of the driving pinion is the main fatigue failure for the straight bevel gear pair and the bending fatigue failure is the main fatigue failure for the driving pinion.
基金Project(50876116) supported by the National Natural Science Foundation of ChinaProject(2007CK3077) supported by Innovative Program of Hunan Science and Technology AgencyProject(1343-77225) supported by the Graduate School of Central South University
文摘In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.
基金Foundation item: Project(IRTl125) supported by the Program for Changjiang Scholars and Innovative Research Team in Universities of China Project(B13024) supported by the "111" Project Project(BK2012811) supported by the Natural Science Foundation of Jiangsu Province, China
文摘Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake.
文摘Objective: To analyze the stress distribution of calcaneus with posterior articular facet compressed after fracture and talus during gait. Methods: A wedge under the posterior articular was transected from a normal finite element model of calcaneus and talus to simulate malformation of compression of the posterior facet after fracture of calcaneus. The model was used to simulate for three subphases of the stance during the gait(heel strike, midstance, push off) and calculate the finite element. The results were compared with normal situation. Results: The stress distribution within the bone in situation of malformation was obtained and regions of elevated stresses for three subphases were located. The results were significantly different from that of normal situation. Conclusion: The simulation of calcaneus and talus in malformation has important clinic implication and can provide an insight into the factors contributing to many clinic pathogenic changes after fracture of calcaneus.
基金supported by the National Natural Science Foundation of China(Grant No. 30801163)
文摘The majority of foot deformities are related to arch collapse or instability,especially the longitudinal arch.Although the relationship between the plantar fascia and arch height has been previously investigated,the stress distribution remains unclear.The aim of this study was to explore the role of the plantar ligaments in foot arch biomechanics.We constructed a geometrical detailed three-dimensional (3-D) finite element (FE) model of the human foot and ankle from computer tomography images.The model comprised the majority of joints in the foot as well as bone segments,major ligaments,and plantar soft tissue.Release of the plantar fascia and other ligaments was simulated to evaluate the corresponding biomechanical effects on load distribution of the bony and ligamentous structures.These intrinsic ligaments of the foot arch were sectioned to simulate different pathologic situations of injury to the plantar ligaments,and to explore bone segment displacement and stress distribution.The validity of the 3-D FE model was verified by comparing results with experimentally measured data via the displacement and von Mise stress of each bone segment.Plantar fascia release decreased arch height,but did not cause total collapse of the foot arch.The longitudinal foot arch was lost when all the four major plantar ligaments were sectioned simultaneously.Plantar fascia release was compromised by increased strain applied to the plantar ligaments and intensified stress in the midfoot and metatarsal bones.Load redistribution among the centralized metatarsal bones and focal stress relief at the calcaneal insertion were predicted.The 3-D FE model indicated that plantar fascia release may provide relief of focal stress and associated heel pain.However,these operative procedures may pose a risk to arch stability and clinically may produce dorsolateral midfoot pain.The initial strategy for treating plantar fasciitis should be non-operative.
基金supported by the National Natural Science Foundation of China (Grant No. 50908046)the Teaching & Scientific Research Fund for Excellent Young Teachers of Southeast University,the Basic Scientific &Research Fund of Southeast University (Grant Nos. 3205001101,Seucx201106)the Priority Academic Program Development Foundation of Jiangsu Higher Education Institutions are gratefully acknowledged
文摘Elastic-plastic steel damper(EPSD) is a new device controlling seismic responses.The mechanical principle of EPSD was presented and a comparison was conducted between the theoretical formulas and finite element(FE) simulation of damper units.The verified force-displacement hysteretic curve of the damper system was obtained with reference to tests.The Nanjing Jiangxinzhou Bridge(NJB) was subsequently taken as the case to investigate the seismic response control effect of EPSDs on single-tower self-anchored suspension bridges.A 3-dimensional FE model of the bridge was established in ANSYS and the dynamic and static analyses of the bridge were conducted,the control effect of EPSDs under different seismic waves was further investigated through nonlinear time-history analysis based on the validated model.Results showed that both the simplified theoretical and FE simulation methods can preferable reflect the mechanical performance of EPSD,and that seismic responses of NJB with EPSDs are better than those with elastic connection device or fluid viscous damper.However,the control effect of EPSDs is influenced by seismic wave characteristics.
基金supported by the National Natural Science Foundation of China(Grant Nos.11372157,11302115&51608301)the Doctoral Fund of Ministry of Education of China(Grant No.20120002110075)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201326)the China Postdoctoral Science Foundation(Grant No.2015M571030)
文摘The finite element analysis(FEA) technology by hydraulic-mechanical-chemical-damage(HMCD) coupling is proposed in this paper for inclined wellbore stability analysis of water-sensitive and laminated rock, developed basing on the recently established FEA technology for transversely isotropic rock with hydraulic-mechanical-damage(HMD) coupling. The chemical activity of the drilling fluid is considered as phenomenological hydration behavior, the moisture content and parameters of rock considering hydration could be determined with time. The finite element(FE) solutions of numerical wellbore model considering the chemical activity of drilling fluid, damage tensor calculation and weak plane strength criterion for transversely isotropic rock are developed for researching the wellbore failure characteristics and computing the time-dependent collapse and fracture pressure of laminated rock as shale reservoirs. A three-dimensional FE model and elastic solid deformation and seepage flow coupled equations are developed, and the damage tensor calculation technology for transversely isotropic rock are realized by introducing effect of the hydration and the stress state under the current load. The proposed method utilizing weak plane strength criterion fully reflects the strength parameters in rock matrix and weak plane. To the end, an effective and reliable numerically three-step FEA strategy is well established for wellbore stability analysis. Numerical examples are given to show that the proposed method can establish efficient and applicable FE model and be suitable for analyzing the timedependsolutions of pore pressure and stresses, and the evolution region considering the hydration surrounding wellbore,furthermore to compute the collapse cycling time and the safe mud weight for collapse and fracture pressure of transversely isotropic rock.