A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexi...A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.展开更多
The energy-conserving performance of dividing wall column(DWC) is discussed in this paper. The heat transfer through the dividing wall is considered and the results are compared with that of common heat insulation div...The energy-conserving performance of dividing wall column(DWC) is discussed in this paper. The heat transfer through the dividing wall is considered and the results are compared with that of common heat insulation dividing wall column(HIDWC). Based on the thermodynamic analysis of heat transfer dividing wall column(HTDWC) and HIDWC, both computer simulation and experiments are employed to analyze the energyconserving situation. Mixtures of n-hexane, n-heptane and n-octane are chosen as the example for separation.The results show that the energy consumption of HTDWC is 50.3% less than that of conventional distillation column, while it is 46.4% less than that of HIDWC. It indicates that DWC is efficient on separating threecomponent mixtures and HTDWC can save more energy than HIDWC. Thus it is necessary to consider the heat transfer while applying DWC to industry.展开更多
Ar/N2/CH4 glow discharge at low-pressure are studied in a closed system. The plasma was produced in 79.6% N2-15.4% Ar- 5.0% CH4 ternary mixture at pressures between 0.5 and 10.0 Torr. The diagnostic has been made by o...Ar/N2/CH4 glow discharge at low-pressure are studied in a closed system. The plasma was produced in 79.6% N2-15.4% Ar- 5.0% CH4 ternary mixture at pressures between 0.5 and 10.0 Torr. The diagnostic has been made by optical emission spectroscopy (OES). The principal species observed were: N2, N2+, CH+, CN, C2, C3, HI3, Ha, C+ and At. It presents the behaviour of the bands and lines intensities as a function of the pressure. Also, it displays the ratios of intensities of N+2 (391.44 nm), CN (392.08 nm), and H (486.13 nm) to that of the N2 (337.13 rim) as function of pressure. The ratios show a slow decreasing behavior as a function of the pressure. Being the CH/N2 ratio more highest and H/N2 ratio the lowest one. The variations of excited species at different pressures may change the subsequent chemical reactions in the gas phase significantly. The present results suggest that the ion-molecule and molecule-molecule reactions in the gas phase are likely to play a dominant role in the present pressures.展开更多
The solute redistribution and phase separation of liquid ternary Co-35%Cu-32.5%Pb immiscible alloy have been investigated using glass fluxing method.A bulk undercooling of 125 K was achieved and the macrosegregation p...The solute redistribution and phase separation of liquid ternary Co-35%Cu-32.5%Pb immiscible alloy have been investigated using glass fluxing method.A bulk undercooling of 125 K was achieved and the macrosegregation pattern was characterized by a top Co-rich zone and a bottom Cu-rich zone.The average solute contents of the two separated zones decreased with the increase of undercooling,except for the solute Pb in Cu-rich zone.With the enhancement of undercooling,a morphological transition from dendrites into equaxied grains occurred to the primary(Co)phase in Co-rich zone.The solute redistribution of Cu in primary(Co)phase was found to depend upon both the undercooling and composition of Co-rich zone.Stokes migration is shown to be the main dynamic mechanism of droplet movement during liquid phase separation.展开更多
基金Project supported by Publication Foundation of National Science and Technology Academic Books of China
文摘A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.
基金Supported by the National Natural Science Foundation of China(21306036)Science&Technology Research Fund Project for Outstanding Youth in Colleges and Universities of Hebei province(Y2012040)the Joint Specialized Research Fund for the Doctoral Program of Higher Education of China(20131317120014)
文摘The energy-conserving performance of dividing wall column(DWC) is discussed in this paper. The heat transfer through the dividing wall is considered and the results are compared with that of common heat insulation dividing wall column(HIDWC). Based on the thermodynamic analysis of heat transfer dividing wall column(HTDWC) and HIDWC, both computer simulation and experiments are employed to analyze the energyconserving situation. Mixtures of n-hexane, n-heptane and n-octane are chosen as the example for separation.The results show that the energy consumption of HTDWC is 50.3% less than that of conventional distillation column, while it is 46.4% less than that of HIDWC. It indicates that DWC is efficient on separating threecomponent mixtures and HTDWC can save more energy than HIDWC. Thus it is necessary to consider the heat transfer while applying DWC to industry.
文摘Ar/N2/CH4 glow discharge at low-pressure are studied in a closed system. The plasma was produced in 79.6% N2-15.4% Ar- 5.0% CH4 ternary mixture at pressures between 0.5 and 10.0 Torr. The diagnostic has been made by optical emission spectroscopy (OES). The principal species observed were: N2, N2+, CH+, CN, C2, C3, HI3, Ha, C+ and At. It presents the behaviour of the bands and lines intensities as a function of the pressure. Also, it displays the ratios of intensities of N+2 (391.44 nm), CN (392.08 nm), and H (486.13 nm) to that of the N2 (337.13 rim) as function of pressure. The ratios show a slow decreasing behavior as a function of the pressure. Being the CH/N2 ratio more highest and H/N2 ratio the lowest one. The variations of excited species at different pressures may change the subsequent chemical reactions in the gas phase significantly. The present results suggest that the ion-molecule and molecule-molecule reactions in the gas phase are likely to play a dominant role in the present pressures.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51327901,50971105 and 51301138)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20126102120064)the Fundamental Research Fund of Northwestern Polytechnical University (Grant No. JC20110278)
文摘The solute redistribution and phase separation of liquid ternary Co-35%Cu-32.5%Pb immiscible alloy have been investigated using glass fluxing method.A bulk undercooling of 125 K was achieved and the macrosegregation pattern was characterized by a top Co-rich zone and a bottom Cu-rich zone.The average solute contents of the two separated zones decreased with the increase of undercooling,except for the solute Pb in Cu-rich zone.With the enhancement of undercooling,a morphological transition from dendrites into equaxied grains occurred to the primary(Co)phase in Co-rich zone.The solute redistribution of Cu in primary(Co)phase was found to depend upon both the undercooling and composition of Co-rich zone.Stokes migration is shown to be the main dynamic mechanism of droplet movement during liquid phase separation.