Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electroche...Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electrochemical measurements were used to characterize its morphology,crystal structure,and electrochemical properties.Removal of aniline by the Ti/TiOxHy/Sb-SnO2electrode was investigated by ultraviolet-Visible spectroscopy and chemical oxygen demand(COD)analysis under different conditions,including current densities,initial concentrations of aniline,pH values,concentrations of chloride ions,and types of reactor.It was found that a higher current density,a lower initial concentration of aniline,an acidic solution,the presence of chloride ions(0.2wt%NaCl),and a three-dimensional(3D) reactor promoted the removal efficiency of aniline.Electrochemical degradation of aniline followed pseudo-first-order kinetics.The aniline(200 mL of 100mg·L-(-1)) and COD removal efficiencies reached 100%and 73.5%,respectively,at a current density of 20 mA·cm-(-2),pH of 7.0,and supporting electrolyte of 0.5 wt%Na2SO4 after 2 h electrolysis in a 3D reactor.These results show that aniline can be significantly removed on the Ti/TiOxHy/Sb-SnO2electrode,which provides an efficient way for elimination of aniline from aqueous solution.展开更多
Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressur...Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.展开更多
This study focused on As(V)removal by electrosorption in a self-made three-dimensional electrode reactor,in which granular activated carbon(GAC)was used as the particle electrode.Under the optimal conditions,the remov...This study focused on As(V)removal by electrosorption in a self-made three-dimensional electrode reactor,in which granular activated carbon(GAC)was used as the particle electrode.Under the optimal conditions,the removal efficiency of As(V)was 84%,and its residual concentration in solution was 0.08 mg/L.From kinetic investigation,the rate determining steps of the entire process may involve more than two processes:membrane diffusion,material diffusion and physical/chemical adsorption processes.During the desorption process,As(V)can be desorbed from GAC,and the GAC was able to electro-adsorb As(V)again after desorption,which means that the electrode has good cycling performance.展开更多
A small scale isotropic mass transfer model was developed for the local liquid side mass transfer coefficients in gas-liquid-solid three-phase flow airlift loop reactor for Newtonian and non-Newtonian fluids. It is ba...A small scale isotropic mass transfer model was developed for the local liquid side mass transfer coefficients in gas-liquid-solid three-phase flow airlift loop reactor for Newtonian and non-Newtonian fluids. It is based onHigbie's penetration theory and Kolmogoroff's theory of isotropic turbulence withwhere ε1 is local rate of energy dissipation, Af is the local microscale, η1 is the local Kolmogoroff scale and D is the diffusion coefficient. The capability of the proposed model is discussed in the light of experimental data obtained from 12 L gas-liquid-solid three-phase flow airlift loop reactor using Newtonian and non-Newtonian fluids. Good agreement with the experimental data was obtained over a wide range of conditions suggesting a general applicability of the proposed model.展开更多
A three phase fluidized bed reactor was used to investigate the combined effect of adsorption and oxidation for phenolic wastewater treatment.Aqueous solutions containing 10 mg·L 1of phenol and ozone were continu...A three phase fluidized bed reactor was used to investigate the combined effect of adsorption and oxidation for phenolic wastewater treatment.Aqueous solutions containing 10 mg·L 1of phenol and ozone were continuously fed co-currently as upward flow into the reactor at constant flow rate of 2 and 1 L·min 1,respectively.The phenolic treatment results in seven cases were compared:(a)O3 only,(b)fresh granular activated carbon(GAC),(c) 1st reused GAC,(d)2nd reused GAC,(e)fresh GAC enhanced with O3,(f)1st reused GAC enhanced with O3,and (g)2nd reused GAC enhanced with O3.The phenolic wastewater was re-circulated through the reactor and its concentration was measured with respect to time.The experimental results revealed that the phenolic degradation using GAC enhanced with O3 provided the best result.The effect of adsorption by activated carbon was stronger than the effect of oxidation by ozone.Fresh GAC could adsorb phenol better than reused GAC.All cases of adsorption on GAC followed the Langmuir isotherm and displayed pseudo second order adsorption kinetics.Finally,a differential equation for the fluidized bed reactor model was used to describe the phenol concentration with respect to time for GAC enhanced with O3.The calculated results agree reasonably well with the experimental results.展开更多
The electrochemical degradation of reed pulp black liquor containing lignin pretreated by acidification method was investigated using a three-dimensional electrode reactor. Using activated carbon as particle electrode...The electrochemical degradation of reed pulp black liquor containing lignin pretreated by acidification method was investigated using a three-dimensional electrode reactor. Using activated carbon as particle electrode, the effects of p H value, reaction temperature, electrolysis time and current on residual concentration of total organic carbon(TOC) were discussed in detail. The optimal conditions were obtained: pH 2.5, influent flow rate of 200 mL/min, 25 °C, 300 mA and 2h of electrolysis time, and the removal efficiency of TOC maintains at 35.57 %. The results of the electrochemical method indicate that ·OH radicals are produced in activated carbon anode in the electrolysis process and then adsorbed on the activated carbon surface. Microcell consists of ·OH radicals and the absorbed lignin. With the microcell reaction, the lignin is degraded, while the anodic polarized curve illustrates that the lignin is obviously oxidized in the anode. The contributions of direct and indirect electrolyses to the TOC removal ratio are about 50%, respectively.展开更多
The local gas-phase flow characteristics such as local gas holdup(εg), local bubble velocity (V_b) and local bubble mean diameter(d_b) at a specified point in a gas-liquid-solid three-phase reversedflow jet loop reac...The local gas-phase flow characteristics such as local gas holdup(εg), local bubble velocity (V_b) and local bubble mean diameter(d_b) at a specified point in a gas-liquid-solid three-phase reversedflow jet loop reactor was experimentally investigated by a five-pointconductivity probe. The effects of gas jet flow rate, liquid jet flowrate, solid loading, nozzle diameter and axial position on the localεg, V_b and d_b profiles were discussed. The presence of solids atlow solid concentrations not only increased the local εg and V_b,but also decreased the local d_b. The optimum solid loading for themaximum local εg and V_b together with the minimum local d_b was0.16×10^-3 m^3, corresponding to a solid volume fraction ε_S=2.5/100.展开更多
The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The...The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The intrinsic kinetics of SCR of NO with NH3 over CuO/γ-Al2O3/cordierite catalyst has been measured in a fixed-bed reactor in the absence of internal and external diffusions. The experimental results show that the reaction rate can be quantified by a first-order expression with activation energy Eá of 94.01 kJ·mol-1 and the corresponding p re-exponential factor A′ of 3.39×108 cm3·g-1·s-1 when NH3 is excessive. However, when NH3 is not enough, an E ley-Rideal kinetic model based on experimental data is derived with Ea of 105.79 kJ·mol-1, the corresponding A of 2 .94×109 cm3·g-1·s-1, heat of adsorption-Hads of 87.90 kJ·mol-1 and the corresponding Aads of 9.24 cm3·mol-1. The intrinsic kinetic model obtained was incorporated in a 3D mathematical model of monolithic reactor, and the agreement of the prediction with experimental data indicates that the present kinetic model is adequate for the reac-tor design and engineering scale-up.展开更多
Objective:The aim of this study was to evaluate the efficacy of three-phase contrast material-enhanced MRI in assessing no-surgical treatment response in peripheral bronchogenic carcinoma preliminarily.Methods:Twenty-...Objective:The aim of this study was to evaluate the efficacy of three-phase contrast material-enhanced MRI in assessing no-surgical treatment response in peripheral bronchogenic carcinoma preliminarily.Methods:Twenty-two patients with bronchogenic carcinoma after no-surgical treatment underwent three-phase contrast material-enhanced MRI.Three scans were obtained at 25 s,120 s and 180 s respectively after nonionic contrast material was administrated via the antecubital vein at a rate of 2 mL/s by using an autoinjector.Precontrast and postcontrast signal intensity on every scan was recorded.Peak Height(PH) and Maximum Enhancement(Emax) were calculated.Enhancement pattern was evaluated on the images obtained at 120 s and 180 s after injection of contrast medium.Results:Precontrast signal intensity,postcontrast signal intensity at 120 s and 180 s were 478 ± 108,926 ± 209 and 1050 ± 252.PH(571 ± 225) and Emax(119 ± 49) of bronchogenic carcinoma after no-surgical treatment were significantly lower than those of bronchogenic carcinoma without any therapy(mean PH 655,mean Emax 150)(t = 2.178,P = 0.005 < 0.05,t = 4.196,P = 0.001 < 0.05).Six cases among 22 appeared homogeneous enhancement at 180 s.At 120 s,there were 4 cases with inhomogeneous enhancement,1 case with homogeneous enhancement,1 case with peripheral enhancement among the 6 cases.Conclusion:Bronchogenic carcinoma after no-surgical treatment shows a gradual increase to the PH after administration of contrast material.Three-phase contrast material-enhanced MRI can reflect the blood supply of bronchogenic carcinoma and might be effective approach for evaluation of no-surgical treatment response in bronchogenic carcinoma.展开更多
The local liquid--phase characteristics of the gas--liquid two-phase and gas--liquid--solid threephase self-aspirated reversed flow jet loop reactor with a concentric gas--liquid injection nozzle were studied experime...The local liquid--phase characteristics of the gas--liquid two-phase and gas--liquid--solid threephase self-aspirated reversed flow jet loop reactor with a concentric gas--liquid injection nozzle were studied experimentally. They facilitate the evaluation of local phenomena. The local instantaneous liquid velocities at different axial positions of the reactor were measured by using the modified pilot tube.The local liquid-phase turbulent structural parameters such as time-averaged velocity. turbulent nuctuating velocity and turbulent micro scale were calculated with the aid of the statistical theory of turbulence. In particular, effects of liquid jet flowrates and solid loadings on the profiles of the liquid--phase turbulent structural parameter both in the jet effective region and in the tubular region inside the draft tube were discussed.展开更多
Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, ste...Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC.展开更多
Continuous usage of bioreactor causes early degradation of most bioreactor liner materials due to the effects of various chemicals, consequently resulting in contamination in the bioprocess. Performance of PP-ternary ...Continuous usage of bioreactor causes early degradation of most bioreactor liner materials due to the effects of various chemicals, consequently resulting in contamination in the bioprocess. Performance of PP-ternary nanocomposite (PPTN) for its potential application in the fabrication of bioreactor liner material was investigated in this study. The chemical resistance of the composite samples obtained was tested by exposing them to chemicals such as acid, alkaline, water and bacterial solutions, according to ASTM 543-06, and their effects on the composite samples were carefully observed. Specifically, the investigation focused on the changes in the physico-mechanical properties of PPTN following long term of exposure to these chemicals. The results show slight increase in the weight and dimensions of samples in the first few days, followed by constant reading for the period of 4 weeks. The performance in terms of physical properties was in the range of PPTN with 0.61% MWCNT > PPTN 0.45% > PPTN 0.17%. The maximum percentage change in tensile properties, observed in this study, was approximately 10% against PPTN (0.17%), which indicates stable mechanical properties of the composite and invariably suggests that the nanocomposites could serve as a better alternative for bioreactor liner fabrication.展开更多
基金supported by the National Natural Science Foundation of China(21507104)the Fundamental Research Funds for the Central Universities of China
文摘Electrochemical oxidation of aniline in aqueous solution was investigated over a novel Ti/TiOxHy/Sb-SnO2 electrode prepared by the electrodeposition method.Scanning electron microscopy,X-ray diffraction,and electrochemical measurements were used to characterize its morphology,crystal structure,and electrochemical properties.Removal of aniline by the Ti/TiOxHy/Sb-SnO2electrode was investigated by ultraviolet-Visible spectroscopy and chemical oxygen demand(COD)analysis under different conditions,including current densities,initial concentrations of aniline,pH values,concentrations of chloride ions,and types of reactor.It was found that a higher current density,a lower initial concentration of aniline,an acidic solution,the presence of chloride ions(0.2wt%NaCl),and a three-dimensional(3D) reactor promoted the removal efficiency of aniline.Electrochemical degradation of aniline followed pseudo-first-order kinetics.The aniline(200 mL of 100mg·L-(-1)) and COD removal efficiencies reached 100%and 73.5%,respectively,at a current density of 20 mA·cm-(-2),pH of 7.0,and supporting electrolyte of 0.5 wt%Na2SO4 after 2 h electrolysis in a 3D reactor.These results show that aniline can be significantly removed on the Ti/TiOxHy/Sb-SnO2electrode,which provides an efficient way for elimination of aniline from aqueous solution.
文摘Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.
基金financially supported by the National Natural Science Foundation of China (No. 52004256)the Shanxi Provincial Science Foundation for Youths, China (No. 201901D211212)+2 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (No. 2019L0574)the Young Academic Leader of North University of China (No. QX202004)the Postdoctoral Innovative Talent Support Program of Hunan Province, China (2021RC2010)
文摘This study focused on As(V)removal by electrosorption in a self-made three-dimensional electrode reactor,in which granular activated carbon(GAC)was used as the particle electrode.Under the optimal conditions,the removal efficiency of As(V)was 84%,and its residual concentration in solution was 0.08 mg/L.From kinetic investigation,the rate determining steps of the entire process may involve more than two processes:membrane diffusion,material diffusion and physical/chemical adsorption processes.During the desorption process,As(V)can be desorbed from GAC,and the GAC was able to electro-adsorb As(V)again after desorption,which means that the electrode has good cycling performance.
基金the National Natural Science Foundation of China (No. 20176040, No. 20336030 and No. 90206001).
文摘A small scale isotropic mass transfer model was developed for the local liquid side mass transfer coefficients in gas-liquid-solid three-phase flow airlift loop reactor for Newtonian and non-Newtonian fluids. It is based onHigbie's penetration theory and Kolmogoroff's theory of isotropic turbulence withwhere ε1 is local rate of energy dissipation, Af is the local microscale, η1 is the local Kolmogoroff scale and D is the diffusion coefficient. The capability of the proposed model is discussed in the light of experimental data obtained from 12 L gas-liquid-solid three-phase flow airlift loop reactor using Newtonian and non-Newtonian fluids. Good agreement with the experimental data was obtained over a wide range of conditions suggesting a general applicability of the proposed model.
基金Supported by the National Nanotechnology Center(NANOTEC)(601003)the National Science and Technology Development Agency(NSTDA)
文摘A three phase fluidized bed reactor was used to investigate the combined effect of adsorption and oxidation for phenolic wastewater treatment.Aqueous solutions containing 10 mg·L 1of phenol and ozone were continuously fed co-currently as upward flow into the reactor at constant flow rate of 2 and 1 L·min 1,respectively.The phenolic treatment results in seven cases were compared:(a)O3 only,(b)fresh granular activated carbon(GAC),(c) 1st reused GAC,(d)2nd reused GAC,(e)fresh GAC enhanced with O3,(f)1st reused GAC enhanced with O3,and (g)2nd reused GAC enhanced with O3.The phenolic wastewater was re-circulated through the reactor and its concentration was measured with respect to time.The experimental results revealed that the phenolic degradation using GAC enhanced with O3 provided the best result.The effect of adsorption by activated carbon was stronger than the effect of oxidation by ozone.Fresh GAC could adsorb phenol better than reused GAC.All cases of adsorption on GAC followed the Langmuir isotherm and displayed pseudo second order adsorption kinetics.Finally,a differential equation for the fluidized bed reactor model was used to describe the phenol concentration with respect to time for GAC enhanced with O3.The calculated results agree reasonably well with the experimental results.
基金Project(50925417)supported by the National Natureal Science Foundation for Distinguished Young Scholar of ChinaProject(51074191)supported by the National Natural Science Foundation of China
文摘The electrochemical degradation of reed pulp black liquor containing lignin pretreated by acidification method was investigated using a three-dimensional electrode reactor. Using activated carbon as particle electrode, the effects of p H value, reaction temperature, electrolysis time and current on residual concentration of total organic carbon(TOC) were discussed in detail. The optimal conditions were obtained: pH 2.5, influent flow rate of 200 mL/min, 25 °C, 300 mA and 2h of electrolysis time, and the removal efficiency of TOC maintains at 35.57 %. The results of the electrochemical method indicate that ·OH radicals are produced in activated carbon anode in the electrolysis process and then adsorbed on the activated carbon surface. Microcell consists of ·OH radicals and the absorbed lignin. With the microcell reaction, the lignin is degraded, while the anodic polarized curve illustrates that the lignin is obviously oxidized in the anode. The contributions of direct and indirect electrolyses to the TOC removal ratio are about 50%, respectively.
基金Supported by the National Natural Science Foundation of China (No. 29706006) and the General Corporation of Petrochemical Engineering of China (No.X598021).
文摘The local gas-phase flow characteristics such as local gas holdup(εg), local bubble velocity (V_b) and local bubble mean diameter(d_b) at a specified point in a gas-liquid-solid three-phase reversedflow jet loop reactor was experimentally investigated by a five-pointconductivity probe. The effects of gas jet flow rate, liquid jet flowrate, solid loading, nozzle diameter and axial position on the localεg, V_b and d_b profiles were discussed. The presence of solids atlow solid concentrations not only increased the local εg and V_b,but also decreased the local d_b. The optimum solid loading for themaximum local εg and V_b together with the minimum local d_b was0.16×10^-3 m^3, corresponding to a solid volume fraction ε_S=2.5/100.
基金Supported by the National Natural Science Foundation of China (20821004 20736001 21076008) the Research Fund for the Doctoral Program of Higher Education of China (2090010110002)
文摘The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The intrinsic kinetics of SCR of NO with NH3 over CuO/γ-Al2O3/cordierite catalyst has been measured in a fixed-bed reactor in the absence of internal and external diffusions. The experimental results show that the reaction rate can be quantified by a first-order expression with activation energy Eá of 94.01 kJ·mol-1 and the corresponding p re-exponential factor A′ of 3.39×108 cm3·g-1·s-1 when NH3 is excessive. However, when NH3 is not enough, an E ley-Rideal kinetic model based on experimental data is derived with Ea of 105.79 kJ·mol-1, the corresponding A of 2 .94×109 cm3·g-1·s-1, heat of adsorption-Hads of 87.90 kJ·mol-1 and the corresponding Aads of 9.24 cm3·mol-1. The intrinsic kinetic model obtained was incorporated in a 3D mathematical model of monolithic reactor, and the agreement of the prediction with experimental data indicates that the present kinetic model is adequate for the reac-tor design and engineering scale-up.
文摘Objective:The aim of this study was to evaluate the efficacy of three-phase contrast material-enhanced MRI in assessing no-surgical treatment response in peripheral bronchogenic carcinoma preliminarily.Methods:Twenty-two patients with bronchogenic carcinoma after no-surgical treatment underwent three-phase contrast material-enhanced MRI.Three scans were obtained at 25 s,120 s and 180 s respectively after nonionic contrast material was administrated via the antecubital vein at a rate of 2 mL/s by using an autoinjector.Precontrast and postcontrast signal intensity on every scan was recorded.Peak Height(PH) and Maximum Enhancement(Emax) were calculated.Enhancement pattern was evaluated on the images obtained at 120 s and 180 s after injection of contrast medium.Results:Precontrast signal intensity,postcontrast signal intensity at 120 s and 180 s were 478 ± 108,926 ± 209 and 1050 ± 252.PH(571 ± 225) and Emax(119 ± 49) of bronchogenic carcinoma after no-surgical treatment were significantly lower than those of bronchogenic carcinoma without any therapy(mean PH 655,mean Emax 150)(t = 2.178,P = 0.005 < 0.05,t = 4.196,P = 0.001 < 0.05).Six cases among 22 appeared homogeneous enhancement at 180 s.At 120 s,there were 4 cases with inhomogeneous enhancement,1 case with homogeneous enhancement,1 case with peripheral enhancement among the 6 cases.Conclusion:Bronchogenic carcinoma after no-surgical treatment shows a gradual increase to the PH after administration of contrast material.Three-phase contrast material-enhanced MRI can reflect the blood supply of bronchogenic carcinoma and might be effective approach for evaluation of no-surgical treatment response in bronchogenic carcinoma.
文摘The local liquid--phase characteristics of the gas--liquid two-phase and gas--liquid--solid threephase self-aspirated reversed flow jet loop reactor with a concentric gas--liquid injection nozzle were studied experimentally. They facilitate the evaluation of local phenomena. The local instantaneous liquid velocities at different axial positions of the reactor were measured by using the modified pilot tube.The local liquid-phase turbulent structural parameters such as time-averaged velocity. turbulent nuctuating velocity and turbulent micro scale were calculated with the aid of the statistical theory of turbulence. In particular, effects of liquid jet flowrates and solid loadings on the profiles of the liquid--phase turbulent structural parameter both in the jet effective region and in the tubular region inside the draft tube were discussed.
基金Project(2009CK2001) supported by the Science & Technology Development Key Program of Hunan Province STA of ChinaProject supported by the Young Teachers Program of Hunan University,China
文摘Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC.
基金the Malaysia Ministry of Higher Education (MOHE) for funding this project under FRGS 0206-56
文摘Continuous usage of bioreactor causes early degradation of most bioreactor liner materials due to the effects of various chemicals, consequently resulting in contamination in the bioprocess. Performance of PP-ternary nanocomposite (PPTN) for its potential application in the fabrication of bioreactor liner material was investigated in this study. The chemical resistance of the composite samples obtained was tested by exposing them to chemicals such as acid, alkaline, water and bacterial solutions, according to ASTM 543-06, and their effects on the composite samples were carefully observed. Specifically, the investigation focused on the changes in the physico-mechanical properties of PPTN following long term of exposure to these chemicals. The results show slight increase in the weight and dimensions of samples in the first few days, followed by constant reading for the period of 4 weeks. The performance in terms of physical properties was in the range of PPTN with 0.61% MWCNT > PPTN 0.45% > PPTN 0.17%. The maximum percentage change in tensile properties, observed in this study, was approximately 10% against PPTN (0.17%), which indicates stable mechanical properties of the composite and invariably suggests that the nanocomposites could serve as a better alternative for bioreactor liner fabrication.