Bundled hybrid offset riser (BHOR) global strength analysis, which is more complex than single line offset riser global strength analysis, was carried out in this paper. At first, the equivalent theory is used to deal...Bundled hybrid offset riser (BHOR) global strength analysis, which is more complex than single line offset riser global strength analysis, was carried out in this paper. At first, the equivalent theory is used to deal with BHOR, and then its global strength in manifold cases was analyzed, along with the use of a three-dimensional nonlinear time domain finite element program. So the max bending stress, max circumferential stress, and max axial stress in the BHOR bundle main section (BMS) were obtained, and the values of these three stresses in each riser were obtained through the "stress distribution method". Finally, the Max Von Mises stress in each riser was given and a check was made whether or not they met the demand. This paper provides a reference for strength analysis of the bundled hybrid offset riser and some other bundled pipelines.展开更多
Experimental investigation was conducted to characterize the responses of high performance concrete(HPC) subjected to multiaxial compressive stresses. The HPC specimens were prepared with three different mix proportio...Experimental investigation was conducted to characterize the responses of high performance concrete(HPC) subjected to multiaxial compressive stresses. The HPC specimens were prepared with three different mix proportions, which corresponds to three different uniaxial compressive strengths. The cubic specimens with size of 100 mm for each edge were tested with servo-hydraulic actuators at different stress ratios. The principal stresses and strains of the specimens were recorded, and the failure of the cubic specimens under various stress states was examined. The experimental results indicated that the stress states and stress ratios had significant influence on the strength and deformation of HPC under biaxial and triaxial compression, especially under triaxial compression. Failure criteria were proposed for the HPC specimens under biaxial and triaxial compressive loading. The test results provided a valuable reference for obtaining multi-axial constitutive law for HPC.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No.51009033)
文摘Bundled hybrid offset riser (BHOR) global strength analysis, which is more complex than single line offset riser global strength analysis, was carried out in this paper. At first, the equivalent theory is used to deal with BHOR, and then its global strength in manifold cases was analyzed, along with the use of a three-dimensional nonlinear time domain finite element program. So the max bending stress, max circumferential stress, and max axial stress in the BHOR bundle main section (BMS) were obtained, and the values of these three stresses in each riser were obtained through the "stress distribution method". Finally, the Max Von Mises stress in each riser was given and a check was made whether or not they met the demand. This paper provides a reference for strength analysis of the bundled hybrid offset riser and some other bundled pipelines.
基金supported by the National Natural Science Foundation of China(Grant No.51278118)the National Basic Research Program of China("973"Project)(Grant No.2009CB623200)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Experimental investigation was conducted to characterize the responses of high performance concrete(HPC) subjected to multiaxial compressive stresses. The HPC specimens were prepared with three different mix proportions, which corresponds to three different uniaxial compressive strengths. The cubic specimens with size of 100 mm for each edge were tested with servo-hydraulic actuators at different stress ratios. The principal stresses and strains of the specimens were recorded, and the failure of the cubic specimens under various stress states was examined. The experimental results indicated that the stress states and stress ratios had significant influence on the strength and deformation of HPC under biaxial and triaxial compression, especially under triaxial compression. Failure criteria were proposed for the HPC specimens under biaxial and triaxial compressive loading. The test results provided a valuable reference for obtaining multi-axial constitutive law for HPC.