The local gas-phase flow characteristics such as local gas holdup(εg), local bubble velocity (V_b) and local bubble mean diameter(d_b) at a specified point in a gas-liquid-solid three-phase reversedflow jet loop reac...The local gas-phase flow characteristics such as local gas holdup(εg), local bubble velocity (V_b) and local bubble mean diameter(d_b) at a specified point in a gas-liquid-solid three-phase reversedflow jet loop reactor was experimentally investigated by a five-pointconductivity probe. The effects of gas jet flow rate, liquid jet flowrate, solid loading, nozzle diameter and axial position on the localεg, V_b and d_b profiles were discussed. The presence of solids atlow solid concentrations not only increased the local εg and V_b,but also decreased the local d_b. The optimum solid loading for themaximum local εg and V_b together with the minimum local d_b was0.16×10^-3 m^3, corresponding to a solid volume fraction ε_S=2.5/100.展开更多
The rainbow schlieren deflectometry has been combined with the computed tomography to obtain three-dimensional density fields of shock containing free jets and we call the method the schlieren CT. Experiments on the s...The rainbow schlieren deflectometry has been combined with the computed tomography to obtain three-dimensional density fields of shock containing free jets and we call the method the schlieren CT. Experiments on the schlieren CT have been performed at a nozzle pressure ratio of 4.0 by using an axisymmetric convergent nozzle with an inner diameter of 10 mm at the exit where the nozzle was operated at an underexpanded condition. Multidirectional rainbow schlieren pictures of an underexpanded sonic jet can be acquired by rotating the nozzle about its longitudinal axis in equal angular intervals and the three-dimensional density fields are reconstructed by the schlieren CT. The validity of the schlieren CT is verified by a comparison with the density fields reconstructed by the Abel inversion method. As a result, it is found that excellent quantitative agreement is reached between the three-dimensional jet density fields reconstructed from both methods.展开更多
基金Supported by the National Natural Science Foundation of China (No. 29706006) and the General Corporation of Petrochemical Engineering of China (No.X598021).
文摘The local gas-phase flow characteristics such as local gas holdup(εg), local bubble velocity (V_b) and local bubble mean diameter(d_b) at a specified point in a gas-liquid-solid three-phase reversedflow jet loop reactor was experimentally investigated by a five-pointconductivity probe. The effects of gas jet flow rate, liquid jet flowrate, solid loading, nozzle diameter and axial position on the localεg, V_b and d_b profiles were discussed. The presence of solids atlow solid concentrations not only increased the local εg and V_b,but also decreased the local d_b. The optimum solid loading for themaximum local εg and V_b together with the minimum local d_b was0.16×10^-3 m^3, corresponding to a solid volume fraction ε_S=2.5/100.
基金funded by Grant-in-Aid for Scientic Research(C)No.15K05804 of Japan Society for the Promotion of Science and supported in part by the 2014 Grant for Specially Promoted Research of the Institute of Environmental Science and Technology,The University of Kitakyushu
文摘The rainbow schlieren deflectometry has been combined with the computed tomography to obtain three-dimensional density fields of shock containing free jets and we call the method the schlieren CT. Experiments on the schlieren CT have been performed at a nozzle pressure ratio of 4.0 by using an axisymmetric convergent nozzle with an inner diameter of 10 mm at the exit where the nozzle was operated at an underexpanded condition. Multidirectional rainbow schlieren pictures of an underexpanded sonic jet can be acquired by rotating the nozzle about its longitudinal axis in equal angular intervals and the three-dimensional density fields are reconstructed by the schlieren CT. The validity of the schlieren CT is verified by a comparison with the density fields reconstructed by the Abel inversion method. As a result, it is found that excellent quantitative agreement is reached between the three-dimensional jet density fields reconstructed from both methods.