The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure wer...The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure were characterized respectively by different detecting techniques. The results reveal that the particles are highly crystalline hydroxyapatite phase. The surfactant has little influence on the morphology of the crystals, but affects the porous structure obviously. The sample without CTAB has a low surface area not exceeding 33 m^2/g, and no distinct pores can be observed by TEM. While the samples obtained with the surfactant get better parameters. Numerous open-ended pores centered at 2-7 nm spread unequally on the surface of the hydroxyapatite nanorods. The N2 adsorption-desorption experiments show type IV isotherms with distinct hysteresis loops, illustrating the presence of mesoporous structure. When the mole ratio of CTAB to HA is 1:2, the sample has the largest surface area of 97.1 m^2/g and pore volume of 0.466 cm^3/g.展开更多
The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel ph...The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel photocatalytic architecture is reported,accomplished via chemical vapor deposition of polymeric carbon nitride on carbon paper.The as-obtained samples with a hydrophobic surface exhibit excellent CO_(2)transport and adsorption ability,as well as the building of triphase air-liquid-solid(CO_(2)-H_(2)O-catalyst)joint interfaces,eventually resulting in the inhibition of H2 evolution and great promotion of CO_(2)reduction with a selectivity of 78.6%.The addition of phosphate to reaction environment makes further improvement of CO_(2)photoreduction into carbon fuels with a selectivity of 93.8%and an apparent quantum yield of 0.4%.This work provides new insight for constructing efficient photocatalytic architecture of CO_(2)photoreduction in aqueous solution and demonstrates that phosphate could play a key role in this process.展开更多
The adsorption of sulfate in aqueous solutions onto organo-nano-clay prepared by natural zeolite and cationic surfactant cetyltrimethylammonium bromide (CTAB) was studied.Parameters such as adsorbent dosage,contact ...The adsorption of sulfate in aqueous solutions onto organo-nano-clay prepared by natural zeolite and cationic surfactant cetyltrimethylammonium bromide (CTAB) was studied.Parameters such as adsorbent dosage,contact time and temperature were investigated using batch adsorption studies.The results show that the uptake of sulfate increases with the increase of contact time and temperature,and decreases with the increase of dosage.The Freundlich isotherm model is fit to explain the sulfate adsorption onto organo-nano-clay.The maximum adsorption capacity is found to be 38.02 mg/g at 40 ℃.The kinetic data fit well the pseudo-second-order and Elovich models with a R2 more than 0.98.It is suggested that chemisorption is the rate-controlling step for adsorption of sulfate onto organo-nano-clay,meanwhile both intraparticle diffusion and boundary layer diffusion also contribute as well.Ion-exchange between sulfate anions and bromide ions and complexation between sulfate anions and CTAB cations are responsible for the mechanism of sulfate adsorption.Keywords:organo-nano-clay; cetyltrimethylammonium bromide (CTAB); modification; sulfate; adsorption展开更多
Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical micro...Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical microscope and polarizing light microscope were used to characterize the microstructure of 3D C/C.The microscopy results show that large number of pores and cracks exist at both bundle/matrix interface and pitch carbon matrix.These defects have important effect on the mechanical behavior of 3D C/C.The in situ properties for components of 3D C/C were acquired by nanoindentation technique.Relative to the matrix sample,the fiber samples have more larger values for modulus,stiffness and hardness.However,there is no significant difference of modulus and stiffness among fiber samples with different directions.展开更多
Magnesium hydroxide(MH),which is commonly used as a halogen-free flame retardant filler in composite materials,was modified by silanization reaction with γ-aminopropyltriethoxysilane (γ-APS) in aqueous solution at d...Magnesium hydroxide(MH),which is commonly used as a halogen-free flame retardant filler in composite materials,was modified by silanization reaction with γ-aminopropyltriethoxysilane (γ-APS) in aqueous solution at different pH values (pH range from 8.0 to 12.0). The surface properties of grafted γ-APS on MH surface as a function of solution pH value were studied using elemental analysis,Fourier transform infrared spectroscopy and zeta potential measurement. The results show that hydrolysis and condensation of γ-APS are activated in alkaline solution and lead to multilayer adsorption of γ-APS molecules on the surface of MH. The type of adsorption orientation of γ-APS on MH surface is a function of coverage density that is altered by changing solution pH value. At low coverage density (e.g. 55 nm-2),γ-APS molecules are preferentially adsorbed to the surface with the silicon moiety towards the surface,and increasing coverage density (e.g. 90 nm-2) leads to parallel orientation. At an even higher coverage density (e.g. 115 nm-2),γ-APS molecules bond to the surface with the amino moiety towards the surface.展开更多
The fundamental research and industry, trials of the third generation automobile steel QP980 were introduced in this paper, including chemical ingredient, mechanical properties, microstructure, forming limit and basic...The fundamental research and industry, trials of the third generation automobile steel QP980 were introduced in this paper, including chemical ingredient, mechanical properties, microstructure, forming limit and basic perform- ance parameters. The application of QP steel of the B-pillar was researched, and the QP980, DP600 and hot forming steel were compared in the aspect of formability, safety and cost. The resuhs showed that the QP980 replacing DP600 steel single piece carl reduce the weight by 2.4 kg. The security and performance is basically the same as that of hot forming steel using 22MnB5, and the cost is reduced by 30 %.展开更多
A West Kentucky mine operation in No. 11 seam encountered floor heave, due to the localized increase in the thickness of the fireclay mine floor. Floor heave has overridden seals installed in two mined out panels. The...A West Kentucky mine operation in No. 11 seam encountered floor heave, due to the localized increase in the thickness of the fireclay mine floor. Floor heave has overridden seals installed in two mined out panels. The third seal's location was planned for isolating that area from the Mains. A plan of support has been developed to prevent repetition of the floor heave and related problems outby the seals. The applied ground control measures were successful. An attempt of a 3D numerical modeling was made; thus, it would match the observed behavior of the mine floor and could be used as a design tool in similar conditions. The paper describes sequence of events, an applied mitigation ground control system, and the first stage of numerical modeling.展开更多
An automatic generation method of geological cross-sections in dredging engineering based on 3D geological solid models is presented.The 3D geological models are built applying the non-uniform rational B-splines(NURBS...An automatic generation method of geological cross-sections in dredging engineering based on 3D geological solid models is presented.The 3D geological models are built applying the non-uniform rational B-splines(NURBS) technique,and a 2D profile can be calculated and generated automatically through Boolean operation to meet the demands of dredging projects.Moreover,an automatic marking method for geological attributes is put forward based on database technology,and the geological attributes include the profile name,scale,horizontal and vertical relative coordinates,geological lithology,and 2D standard lithology legend.At the same time,the automatic marking method can also provide an interactive mode for geological engineers to edit and modify the profile in the modeling system.Practical engineering applications show that the automatic generation method is a simple,flexible,fast and precise visual graphics rendering process that can create 2D standard profiles automatically and efficiently.This method also provides a convenient support tool for geological engineering digital analysis.展开更多
The authors discussed the method of wavelet neural network (WNN) for correlation of base-level cycle. A new vectored method of well log data was proposed. Through the training with the known data set, the WNN can re...The authors discussed the method of wavelet neural network (WNN) for correlation of base-level cycle. A new vectored method of well log data was proposed. Through the training with the known data set, the WNN can remenber the cycle pattern characteristic of the well log curves. By the trained WNN to identify the cycle pattern in the vectored log data, the ocrrdation process among the well cycles was completed. The application indicates that it is highly efficient and reliable in base-level cycle correlation.展开更多
Variation of the surface adhesion force during the formation of octadecyl trichlorosilane (OTS) self-assembled monolayer on a glass substrate surface was investigated by atomic force microscope (AFM). The research sho...Variation of the surface adhesion force during the formation of octadecyl trichlorosilane (OTS) self-assembled monolayer on a glass substrate surface was investigated by atomic force microscope (AFM). The research shows that the hydrophobicity and the adhesion force of the sample surface increases gradually while the substrate surface is covered by OTS molecules as the reaction proceeds. After 15min reaction, a close-packed and smooth OTS self-assembled monolayer could form on the glass substrate surface with an advancing contact angle of 105° and an interfacial energy of 55.79mJ·m-2.展开更多
The spatial structure characteristics of landform are the foundation of geomorphologic classification and recognition.This paper proposed a new method on quantifying spatial structure characteristics of terrain surfac...The spatial structure characteristics of landform are the foundation of geomorphologic classification and recognition.This paper proposed a new method on quantifying spatial structure characteristics of terrain surface based on improved 3D Lacunarity model.Lacunarity curve and its numerical integration are used in this model to improve traditional classification result that different morphological types may share the close value of indexes based on global statistical analysis.Experiments at four test areas with different landform types show that improved 3D Lacunarity model can effectively distinguish different morphological types per texture analysis.Higher sensitivity in distinguishing the tiny differences of texture characteristics of terrain surface shows that the quantification method by 3D Lacu-narity model and its numerical integration presented in this paper could contribute to improving the accuracy of land-form classifications and relative studies.展开更多
Synthesis of ZnO nanoparticles by hydrothermal technique in presence of cetyltrimethylammonium bromide (CTAB) as surfactant was carried out by statistically designed experiments based on Box Behnken method. The mean...Synthesis of ZnO nanoparticles by hydrothermal technique in presence of cetyltrimethylammonium bromide (CTAB) as surfactant was carried out by statistically designed experiments based on Box Behnken method. The mean parameters, surfactant concentration, time and temperature have been studied to show their effect on ZnO particle size and morphology. The results of experimental design indicate that the surfactant concentration, reaction time and temperature were significant. ZnO particles were investigated using XRD and SEM and the findings show that ZnO nanoparticles were formed at 100 ℃ and their crystallinity were improved with temperature rise from 100 to 200 ℃. Particle size of ZnO in the range of 39-76 nm is achieved using this technique.展开更多
Objective: To study on the preparation process of a new surfactant-based microbubble ultrasound contrast agent and to evaluate its contrast effects in vivo. Methods: Microbubble ultrasound contrast agent with three es...Objective: To study on the preparation process of a new surfactant-based microbubble ultrasound contrast agent and to evaluate its contrast effects in vivo. Methods: Microbubble ultrasound contrast agent with three ester surfactants and other additives as its shell materials was prepared by sonication. Sulfur hexafluoride was adopted as the inner gas of the microbubbles. New methods through the combination of optical microscope and some softwares were used to measure the size distribution and the concentration of the microbubbles. Some parameters such as the pH value of the phosphate buffer, quantity of the carboxylic methyl cellulose in the shell materials, selection of the ultrasound power and process time, were studied. Six hybirded dogs were used to verify the in vivo contrast imaging of the contrast agent using second harmonic power Doppler modality. Safety and persistent time of the agent inner animal body were also investigated. Results: Ultrasound contrast agent prepared in the experiment had an average microbubble diameter of 3.95 microns with concentration of 3.6×109 microbubbles per millilitre. Carboxylic methyl cellulose was found as an important shell material which had obviously effect on the microbubble stability and production even with a little quantity. The buffer pH value also had a key role on the microbubble formation and the final production. When the buffer pH value reached 7.4, there was no microbubble produced. Under the approximate microbubble production, process time could be shorten with the increasing ultrasound power. The obvious ultrasound contrast imaging effects were detected in the dog's heart chamber and liver as well as kidney using only one millilitre agent when diluted. The agent was found safe to the dogs. At the same time, persistent time of the agent was found over 20 min in the dog's body. Conclusion: The new ultrasound contrast agent prepared in the experiment has high microbubble production and concentration, narrow microbubble size distribution ranging in several microns, well stability, little dosage needed in the contrast, well safety to the dogs and long persistent time, obvious contrast imaging effect in the dog's heart chamber, kidney and liver. These experiment data indicate that the new ultrasound contrast agent with three ester surfactants and carboxylic methyl cellulose as its main shell materials can be further developed for clinical purposes.展开更多
Micellar enhanced ultrafiltration (MEUF) is a new effective treatment technology for the filtration removal of organic pollutants through solubilization. The present paper is aimed to study the solubilization of org...Micellar enhanced ultrafiltration (MEUF) is a new effective treatment technology for the filtration removal of organic pollutants through solubilization. The present paper is aimed to study the solubilization of organic compounds such as chlorobenzene (CB), pyrene and phenol by anionic, cationic and mixed anionic-nonionic surfactants such as sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTMAB) and Tween-80 (TW80) and the mixed SDS-TW80 with a batch equilibrium method. This study enables us to supply deeper investigation for MEUF. The results showed that solubilization capacity was not obvious below the critical micellar concentration (CMC). The apparent solubilities of organic compounds were linearly related to surfactant concentrations over their CMCs. Solubilization capacity by single surfactants follow the order of TW80 〉 CTMAB 〉 SDS. The results also proved that the solubilization of the organic contaminants by the mixed surfactants can significantly be enhanced compared with the single anionic surfactant SDS. Whereas the CMC can be decreased, the solubility can be increased as long as the mass ratio of nonionic surfactant increases. The solubility enhancement efficiency of the different organic compounds follow the order of phenol 〉 CB 〉 pyrene. In addition, the solubilization ratio appears to be positively relative to the intrinsic water solubility of the organic contaminants and negatively correlates to octanol-water coefficients (Kow) of organic compounds and the hydrophile-lypophile balance values (HLB) of the surfactants.展开更多
基金Projects(51102285,81170912)supported by the National Natural Science Foundation of ChinaProject supported by the Open Foundation of State Key Laboratory of Powder Metallurgy,China
文摘The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure were characterized respectively by different detecting techniques. The results reveal that the particles are highly crystalline hydroxyapatite phase. The surfactant has little influence on the morphology of the crystals, but affects the porous structure obviously. The sample without CTAB has a low surface area not exceeding 33 m^2/g, and no distinct pores can be observed by TEM. While the samples obtained with the surfactant get better parameters. Numerous open-ended pores centered at 2-7 nm spread unequally on the surface of the hydroxyapatite nanorods. The N2 adsorption-desorption experiments show type IV isotherms with distinct hysteresis loops, illustrating the presence of mesoporous structure. When the mole ratio of CTAB to HA is 1:2, the sample has the largest surface area of 97.1 m^2/g and pore volume of 0.466 cm^3/g.
文摘The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel photocatalytic architecture is reported,accomplished via chemical vapor deposition of polymeric carbon nitride on carbon paper.The as-obtained samples with a hydrophobic surface exhibit excellent CO_(2)transport and adsorption ability,as well as the building of triphase air-liquid-solid(CO_(2)-H_(2)O-catalyst)joint interfaces,eventually resulting in the inhibition of H2 evolution and great promotion of CO_(2)reduction with a selectivity of 78.6%.The addition of phosphate to reaction environment makes further improvement of CO_(2)photoreduction into carbon fuels with a selectivity of 93.8%and an apparent quantum yield of 0.4%.This work provides new insight for constructing efficient photocatalytic architecture of CO_(2)photoreduction in aqueous solution and demonstrates that phosphate could play a key role in this process.
基金Project(51178159)supported by the National Natural Science Foundation of ChinaProject(CXZZ12_0236)supported by the Postgraduate Technological Innovation Program of Jiangsu Province Education Department,China
文摘The adsorption of sulfate in aqueous solutions onto organo-nano-clay prepared by natural zeolite and cationic surfactant cetyltrimethylammonium bromide (CTAB) was studied.Parameters such as adsorbent dosage,contact time and temperature were investigated using batch adsorption studies.The results show that the uptake of sulfate increases with the increase of contact time and temperature,and decreases with the increase of dosage.The Freundlich isotherm model is fit to explain the sulfate adsorption onto organo-nano-clay.The maximum adsorption capacity is found to be 38.02 mg/g at 40 ℃.The kinetic data fit well the pseudo-second-order and Elovich models with a R2 more than 0.98.It is suggested that chemisorption is the rate-controlling step for adsorption of sulfate onto organo-nano-clay,meanwhile both intraparticle diffusion and boundary layer diffusion also contribute as well.Ion-exchange between sulfate anions and bromide ions and complexation between sulfate anions and CTAB cations are responsible for the mechanism of sulfate adsorption.Keywords:organo-nano-clay; cetyltrimethylammonium bromide (CTAB); modification; sulfate; adsorption
基金Project(61391) supported by the National Security Basic Research Program of ChinaProject (91016029) supported by the National Natural Science Foundation of China
文摘Nanoindentation tests were conducted to investigate the near-surface mechanical properties of the individual components(fiber and matrix) for three-dimensional reinforced carbon/carbon composites(3D C/C).Optical microscope and polarizing light microscope were used to characterize the microstructure of 3D C/C.The microscopy results show that large number of pores and cracks exist at both bundle/matrix interface and pitch carbon matrix.These defects have important effect on the mechanical behavior of 3D C/C.The in situ properties for components of 3D C/C were acquired by nanoindentation technique.Relative to the matrix sample,the fiber samples have more larger values for modulus,stiffness and hardness.However,there is no significant difference of modulus and stiffness among fiber samples with different directions.
基金Projects(50574104 50574102) supported by the National Natural Science Foundation of China
文摘Magnesium hydroxide(MH),which is commonly used as a halogen-free flame retardant filler in composite materials,was modified by silanization reaction with γ-aminopropyltriethoxysilane (γ-APS) in aqueous solution at different pH values (pH range from 8.0 to 12.0). The surface properties of grafted γ-APS on MH surface as a function of solution pH value were studied using elemental analysis,Fourier transform infrared spectroscopy and zeta potential measurement. The results show that hydrolysis and condensation of γ-APS are activated in alkaline solution and lead to multilayer adsorption of γ-APS molecules on the surface of MH. The type of adsorption orientation of γ-APS on MH surface is a function of coverage density that is altered by changing solution pH value. At low coverage density (e.g. 55 nm-2),γ-APS molecules are preferentially adsorbed to the surface with the silicon moiety towards the surface,and increasing coverage density (e.g. 90 nm-2) leads to parallel orientation. At an even higher coverage density (e.g. 115 nm-2),γ-APS molecules bond to the surface with the amino moiety towards the surface.
文摘The fundamental research and industry, trials of the third generation automobile steel QP980 were introduced in this paper, including chemical ingredient, mechanical properties, microstructure, forming limit and basic perform- ance parameters. The application of QP steel of the B-pillar was researched, and the QP980, DP600 and hot forming steel were compared in the aspect of formability, safety and cost. The resuhs showed that the QP980 replacing DP600 steel single piece carl reduce the weight by 2.4 kg. The security and performance is basically the same as that of hot forming steel using 22MnB5, and the cost is reduced by 30 %.
文摘A West Kentucky mine operation in No. 11 seam encountered floor heave, due to the localized increase in the thickness of the fireclay mine floor. Floor heave has overridden seals installed in two mined out panels. The third seal's location was planned for isolating that area from the Mains. A plan of support has been developed to prevent repetition of the floor heave and related problems outby the seals. The applied ground control measures were successful. An attempt of a 3D numerical modeling was made; thus, it would match the observed behavior of the mine floor and could be used as a design tool in similar conditions. The paper describes sequence of events, an applied mitigation ground control system, and the first stage of numerical modeling.
基金Supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51021004)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)National Key Technology R and D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘An automatic generation method of geological cross-sections in dredging engineering based on 3D geological solid models is presented.The 3D geological models are built applying the non-uniform rational B-splines(NURBS) technique,and a 2D profile can be calculated and generated automatically through Boolean operation to meet the demands of dredging projects.Moreover,an automatic marking method for geological attributes is put forward based on database technology,and the geological attributes include the profile name,scale,horizontal and vertical relative coordinates,geological lithology,and 2D standard lithology legend.At the same time,the automatic marking method can also provide an interactive mode for geological engineers to edit and modify the profile in the modeling system.Practical engineering applications show that the automatic generation method is a simple,flexible,fast and precise visual graphics rendering process that can create 2D standard profiles automatically and efficiently.This method also provides a convenient support tool for geological engineering digital analysis.
基金Supported by Project of Dagang Branch of Petroleum Group Company Ltd,CNPC No TJDG-JZHT-2005-JSDW-0000-00339
文摘The authors discussed the method of wavelet neural network (WNN) for correlation of base-level cycle. A new vectored method of well log data was proposed. Through the training with the known data set, the WNN can remenber the cycle pattern characteristic of the well log curves. By the trained WNN to identify the cycle pattern in the vectored log data, the ocrrdation process among the well cycles was completed. The application indicates that it is highly efficient and reliable in base-level cycle correlation.
基金Partially supported by Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Committee.
文摘Variation of the surface adhesion force during the formation of octadecyl trichlorosilane (OTS) self-assembled monolayer on a glass substrate surface was investigated by atomic force microscope (AFM). The research shows that the hydrophobicity and the adhesion force of the sample surface increases gradually while the substrate surface is covered by OTS molecules as the reaction proceeds. After 15min reaction, a close-packed and smooth OTS self-assembled monolayer could form on the glass substrate surface with an advancing contact angle of 105° and an interfacial energy of 55.79mJ·m-2.
基金Under the auspices of National Natural Science Foundation of China (No.40930531,41171320,41001301)
文摘The spatial structure characteristics of landform are the foundation of geomorphologic classification and recognition.This paper proposed a new method on quantifying spatial structure characteristics of terrain surface based on improved 3D Lacunarity model.Lacunarity curve and its numerical integration are used in this model to improve traditional classification result that different morphological types may share the close value of indexes based on global statistical analysis.Experiments at four test areas with different landform types show that improved 3D Lacunarity model can effectively distinguish different morphological types per texture analysis.Higher sensitivity in distinguishing the tiny differences of texture characteristics of terrain surface shows that the quantification method by 3D Lacu-narity model and its numerical integration presented in this paper could contribute to improving the accuracy of land-form classifications and relative studies.
文摘Synthesis of ZnO nanoparticles by hydrothermal technique in presence of cetyltrimethylammonium bromide (CTAB) as surfactant was carried out by statistically designed experiments based on Box Behnken method. The mean parameters, surfactant concentration, time and temperature have been studied to show their effect on ZnO particle size and morphology. The results of experimental design indicate that the surfactant concentration, reaction time and temperature were significant. ZnO particles were investigated using XRD and SEM and the findings show that ZnO nanoparticles were formed at 100 ℃ and their crystallinity were improved with temperature rise from 100 to 200 ℃. Particle size of ZnO in the range of 39-76 nm is achieved using this technique.
基金Supported by the High Technology Research Development Program of China(863 Program,No.2001AA218031)and the National Natural Science Foundation of China(No.30270404).
文摘Objective: To study on the preparation process of a new surfactant-based microbubble ultrasound contrast agent and to evaluate its contrast effects in vivo. Methods: Microbubble ultrasound contrast agent with three ester surfactants and other additives as its shell materials was prepared by sonication. Sulfur hexafluoride was adopted as the inner gas of the microbubbles. New methods through the combination of optical microscope and some softwares were used to measure the size distribution and the concentration of the microbubbles. Some parameters such as the pH value of the phosphate buffer, quantity of the carboxylic methyl cellulose in the shell materials, selection of the ultrasound power and process time, were studied. Six hybirded dogs were used to verify the in vivo contrast imaging of the contrast agent using second harmonic power Doppler modality. Safety and persistent time of the agent inner animal body were also investigated. Results: Ultrasound contrast agent prepared in the experiment had an average microbubble diameter of 3.95 microns with concentration of 3.6×109 microbubbles per millilitre. Carboxylic methyl cellulose was found as an important shell material which had obviously effect on the microbubble stability and production even with a little quantity. The buffer pH value also had a key role on the microbubble formation and the final production. When the buffer pH value reached 7.4, there was no microbubble produced. Under the approximate microbubble production, process time could be shorten with the increasing ultrasound power. The obvious ultrasound contrast imaging effects were detected in the dog's heart chamber and liver as well as kidney using only one millilitre agent when diluted. The agent was found safe to the dogs. At the same time, persistent time of the agent was found over 20 min in the dog's body. Conclusion: The new ultrasound contrast agent prepared in the experiment has high microbubble production and concentration, narrow microbubble size distribution ranging in several microns, well stability, little dosage needed in the contrast, well safety to the dogs and long persistent time, obvious contrast imaging effect in the dog's heart chamber, kidney and liver. These experiment data indicate that the new ultrasound contrast agent with three ester surfactants and carboxylic methyl cellulose as its main shell materials can be further developed for clinical purposes.
文摘Micellar enhanced ultrafiltration (MEUF) is a new effective treatment technology for the filtration removal of organic pollutants through solubilization. The present paper is aimed to study the solubilization of organic compounds such as chlorobenzene (CB), pyrene and phenol by anionic, cationic and mixed anionic-nonionic surfactants such as sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTMAB) and Tween-80 (TW80) and the mixed SDS-TW80 with a batch equilibrium method. This study enables us to supply deeper investigation for MEUF. The results showed that solubilization capacity was not obvious below the critical micellar concentration (CMC). The apparent solubilities of organic compounds were linearly related to surfactant concentrations over their CMCs. Solubilization capacity by single surfactants follow the order of TW80 〉 CTMAB 〉 SDS. The results also proved that the solubilization of the organic contaminants by the mixed surfactants can significantly be enhanced compared with the single anionic surfactant SDS. Whereas the CMC can be decreased, the solubility can be increased as long as the mass ratio of nonionic surfactant increases. The solubility enhancement efficiency of the different organic compounds follow the order of phenol 〉 CB 〉 pyrene. In addition, the solubilization ratio appears to be positively relative to the intrinsic water solubility of the organic contaminants and negatively correlates to octanol-water coefficients (Kow) of organic compounds and the hydrophile-lypophile balance values (HLB) of the surfactants.