The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditi...The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditions,shear strength and concentrated surcharge load.The results obtained by 2D and 3D analyses were compared and the applicable scope of 2D and 3D method was analyzed.The results of the numerical simulation show that 3D effect is sensitive to the width of slip surface.As for slopes with specific geometry,3D effect is influenced by dimensionless parameter c/(γHtanφ).For those infinite slopes with local loading,external load has the major impact on failure mode.For those slopes with local loading and geometric constraints,the failure mode is influenced by both factors.With the increase of loading length,boundary condition exerts a more significant impact on the failure mode,and then 2D and 3D stability charts are developed,which provides a rapid and reliable way to calculate 2D and 3D factor of safety without iteration.Finally,a simple and practical calculation procedure based on the study of 3D effect and stability charts is proposed to recognize the right time to apply 2D or 3D method.展开更多
A 3-DOF ultrasonic motor with a cylinder-shaped stator and a spherical rotor is developed. The motor provides 3-DOF rotation around x, y, and z-axes implemented by two second order bending modes with orthogonality an...A 3-DOF ultrasonic motor with a cylinder-shaped stator and a spherical rotor is developed. The motor provides 3-DOF rotation around x, y, and z-axes implemented by two second order bending modes with orthogonality and one first order longitudinal mode of the stator. The three modes must satisfy some conditions. In our previous research, in order to satisfy these conditions, a parameter fitting design method is used. However, it is an experiential design method with low efficiency and costs much time, sometimes it even cannot find a desired solution. This paper puts forward an optimal design method for the stator. Based on the method, an optimization program is developed in MATLAB environment. Using the program, a new prototype of 3-DOF ultrasonic motor is designed. Its stator has diameter of 20 mm, height of 67 mm, and mass of 157 g. Experimental results show that the measured stators′ modal frequencies and modal shapes are in good consistent agreement with the results obtained by the optimal design program.展开更多
Reservoir sedimentation dynamics were interpreted using Cs-137 activity, particle size and rainfall erosivity analysis in conjunetion with sediment profile coring. Two sediment cores were retrieved from the Changshou ...Reservoir sedimentation dynamics were interpreted using Cs-137 activity, particle size and rainfall erosivity analysis in conjunetion with sediment profile coring. Two sediment cores were retrieved from the Changshou reservoir of Chongqing, which was dammed in 1956 at the outlet of Longxi catchment in the Three Gorges Area using a gravity corer equipped with an aerylie tube with an inner diameter of 6 em. The extracted cores were sectioned at 2 cm intervals. All sediment core samples were dried, sieved (〈2 mm) and weighed. 137Cs activity was measured by y-ray spectrometry. The particle size of the core samples was measured using laser particle size granulometry. Rainfall erosivity was calculated using daily rainfall data from meteorological records and information on soil conservation history was collated to help interpret temporal sedimentation trends. The peak fallout of 137Cs in 1963 appeared at a depth of 84 cm in core A and 56 cm in core B. The peaks of sand contents were related to the peaks of rainfall erosivity which were recorded in 1982, 1989, 1998 and 2005, respectively. Sedimentation rates were calculated according to the sediment profile chronological controls of 1956, 1963, 1982, 1989, 1998 and 2oo5. The highest sedimentation rate was around 2.0 cm·a^-1 between 1982 and 1988 when the Chinese national reform and the Household Responsibility System were implemented, leading to accelerated soil erosion in the Longxi catchment. Since 1990s, and particularly since 2005, sedimentation rates clearly decreased, since a number of soil conservation programs have been carried out in the catchment. The combined use of ^137Cs chronology, particle size and rainfall erosivity provided a simple basis for reconstructing reservoir sedimentation dynamics in the context of both physical processes and soil restoration. Its advantages include avoiding the need for full blown sediment yield reconstruction and the concomitant consideration of core correlation and corrections for autochthonous inputs and reservoir trap efficiency.展开更多
Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending ...Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending on location. Microscopic dynamics implies that H is over much smaller lengths than pocket universes to be understood as a local space reproduction rate. We illustrate this via discussing that even exponential inflation in TeV-gravity is slow on the relevant time scale. In our on small scales inhomogeneous cosmos, a reproduction rate H depends on position. We therefore discuss Einstein-Strauss vacuoles and a Lindquist-Wheeler like lattice to connect the local rate properly with the scaling of an expanding cosmos. Consistency allows H to locally depend on Weyl curvature similar to vacuum polarization. We derive a proportionality constant known from Kepler's third law and discuss the implications for the finiteness of the cosmological constant.展开更多
The instability mechanisms of the supported liquid membrane using Celgard 2500 membranes as support and tributyl phosphate dissolved in kerosene as carrier for phenol transport was studied by ele.etroehemical impedanc...The instability mechanisms of the supported liquid membrane using Celgard 2500 membranes as support and tributyl phosphate dissolved in kerosene as carrier for phenol transport was studied by ele.etroehemical impedance spectroscopy. Emulsion formation is demonstrated to be one of the main causes for the instability of supported liquid membrane in the present system. The emulsion-facilitated conditions, such as higher membrane liquid concentration, faster stirring speed, lower salt concentration and higher HLB value, would accelerate the degradation of supported liquid membrane. Other mechanisms including solubility and osmotic pressure work together to increase the membrane liauid loss.展开更多
Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.Howe...Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.However,two significant accelerometer nonlinear errors need to be attacked to improve the modulation effect.Firstly,the asymmetry scale factor inaccuracy enlarges the errors of frequent zero-cross oscillating specific force measured by non-axial accelerometers.Secondly,the traditional linear model of accelerometers can hardly measure the continued or intermittent acceleration accurately.These two nonlinear errors degrade the high-precision specific force measurement and the calibration of nonlinear coefficients because triaxial accelerometers is urgent for the marine navigation.Based on the digital signal sampling property,the square coefficients and cross-coupling coefficients of accelerometers are considered.Meanwhile,the asymmetry scale factors are considered in the I-F conversion unit.Thus,a nonlinear model of specific force measurement is established compared to the linear model.Based on the three-axis turntable,the triaxial gyroscopes are utilized to measure the specific force observation for triaxial accelerometers.Considering the nonlinear combination,the standard calibration parameters and asymmetry factors are separately estimated by a two-step iterative identification procedure.Besides,an efficient specific force calculation model is approximately derived to reduce the real-time computation cost.Simulation results illustrate the sufficient estimation accuracy of nonlinear coefficients.The experiments demonstrate that the nonlinear model shows much higher accuracy than the linear model in both the gravimetry and sway navigation validations.展开更多
The Vietnamese Mekong Delta is located at the end of the Mekong River, one of the 10 largest rivers in the world. It plays an important role, especially in terms of food security for not only Vietnam but also the worl...The Vietnamese Mekong Delta is located at the end of the Mekong River, one of the 10 largest rivers in the world. It plays an important role, especially in terms of food security for not only Vietnam but also the world. However, the Vietnamese Mekong Delta is projected to be heavily affected by: (1) the annual (fluvial) flood, which would be changed in terms of time and spatial distribution after impacts of climate change scenarios (i.e., sharper hydrograph with shorter flood period); and (2) sea level rise. Such combination would result in significant changes of surface water resources, leading to consequent impacts on the existing fanning systems in the Vietnamese Mekong Delta. Therefore, this paper presents a new approach of integrating a one-dimensional hydrodynamic model (ISIS-1 D) with GIS (Geographic Information System ) analyses to: (1) identify priority areas for flood adaptation and mitigation; (2) provide an insight to local decision-makers in the Vietnamese Mekong Delta in changes of future floods.展开更多
Based on the analysis of the Boltzmann's distribution in an infinitely high temperature found degeneration of the thermodynamic system in a purely informational with independently of each particle on its energy level...Based on the analysis of the Boltzmann's distribution in an infinitely high temperature found degeneration of the thermodynamic system in a purely informational with independently of each particle on its energy level, thus providing them full visibility of and the ability to calculate the maximum entropy in the Boltzmann formula S∞ = R·InNA = 455.251 J/(mol.K). This value, when expressed in terms of fundamental constants, is itself a physical and chemical constants and mole monatomic ideal gas is unsurpassed in any studied temperature range. For complex substances this limit increases in direct proportion to their atomic. The existence of two limits entropy change--lower, equal to zero according to the third law of thermodynamics, and the top, equal to S∞, makes possible the explicit expression of the temperature dependence of the entropy in the form of an exponentialS=S∞exp[-5030.31p 2/5 /(M3/5T)](5/2)r e/s∞. rather than in the form of a logarithmic dependence of the infinite by the approximateformula Sakura-Tetrode with which this the dependence is almost identical in the studied temperature range (100-10,000 K), but not absurd negative entropy in the extrapolation formula Sakura-Tetrode absolute zero to the region and especially in the area of T → ∞where it turns S →∞.展开更多
During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which d...During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which describes the relationship between the placement of beacon nodes and whether the node can be located in 3D indoor environment. In fact, as the highest locating accuracy can be acquired when the beacon nodes form one or more equilateral triangles in 2D plane, we generalizes this conclusion to 3D space, and proposes a beacon nodes selection algorithm based on the minimum condition number to get the higher locating accuracy, which can minimize the influence of distance measurement error. Simulation results show that the algorithm is effective and feasible.展开更多
According to the data of preliminary survey, the authors established a landslide geological model,on the basis of analyses on the sensitivity of landslide, tried to simulate and calculate the landslide stability of Sh...According to the data of preliminary survey, the authors established a landslide geological model,on the basis of analyses on the sensitivity of landslide, tried to simulate and calculate the landslide stability of Shuitianba with the method of transfer coefficient when it is under different strength parameters, and study the landslide mechanism. The results show that it is sensitive to the effects of shear strength parameters of sliding zone and groundwater level on landslide stability safety coefficient, which provides reliable basis for calculation of landslide stability.展开更多
This paper reports the investigation of the location accuracy of a three-dimensional (3D) lightning-radiation-source locating system using sounding balloon measurements. By comparing the information from the balloon...This paper reports the investigation of the location accuracy of a three-dimensional (3D) lightning-radiation-source locating system using sounding balloon measurements. By comparing the information from the balloon-borne VHF transmitter flight path and locations using simple geometric models, the location uncertainties of sources both over and outside the network were estimated. For radiation sources inside the network and below an altitude of 7 km, the horizontal uncertainty was 12-48 m and the total mean value was 21 m (rms), and the vertical uncertainty was 20-78 m and the total mean value was 49 m (rms). Outside the network, the location uncertainties increased with distance. The geometric model showed that range and altitude errors increased as a function of the range squared whereas the range errors increased parabolically with distance, and that was confirmed by the covariance calculation results. The standard deviation was used inside the network and covariance was used outside the network. The results indicated that location errors from a simple geometric model exhibited good agreement with standard experimental data. The geometry of the network, set of measurements, and calculation method were verified as suitable. The chi-square values of the least squares goodness of fit algorithm were verified and the timing error (A/rms) Of the fitting formula was estimated. The distribution of the chi-square values was less than 5, corresponding to a timing error of 50-66 ns (rms).展开更多
Interferometry plays an important role in revealing fine-scale structures of ionospheric irregularity.By placing an additional receiving array of four 5-element Yagi antennas in the north of the main East-West array o...Interferometry plays an important role in revealing fine-scale structures of ionospheric irregularity.By placing an additional receiving array of four 5-element Yagi antennas in the north of the main East-West array of the Sanya VHF radar,multiple interferometry baselines with components parallel and perpendicular to the magnetic meridian are formed.These baselines allow us to study the three-dimensional(3D)behavior of low-latitude ionospheric field-aligned irregularity(FAI)over Sanya.Using multiple non-collinear receiving baselines,an experiment for which the Sanya VHF radar operated as an interferometer was performed on 10 July 2013.Ionospheric E-region FAI echoes with periods of several minutes were observed during 0745-0915 UT;mean Doppler velocity was around -30 m/s with spectral widths of about 50 m/s.The interferometry results show fine-scale structures of E-region FAI with a zonal scale size of 15 km or less.In addition,we found that the periodic variations of echo intensity shown in radar range-time-intensity(RTI)maps were produced by spatially separated E-region irregularity patches.The patches drifted westward with a velocity of about 40-60 m/s and could be associated with propagating gravity waves.These results provide a clearer picture of the characteristics of FAI and thus help to investigate the generation and dynamics of low-latitude ionospheric irregularities in the Chinese sector.展开更多
We present a high-definition (HD) 3D laparoscopic system including a dual channel optical system, two cameras, a camera control unit (CCU), and an HD 3D monitor. This laparoscopic system is capable of outputting d...We present a high-definition (HD) 3D laparoscopic system including a dual channel optical system, two cameras, a camera control unit (CCU), and an HD 3D monitor. This laparoscopic system is capable of outputting dual high-definition videos and providing vivid 3D images. A modified pinhole camera model is used for camera calibration and a new method of depth measurement to improve precision. The average error of depth measurement measured by experiment (about 1.13 mm) was small in proportion to the large range in distance of the system (10-150 mm). The new method is applicable to any calibrated binocular vision system.展开更多
基金Project (10972238) supported by the National Natural Science Foundation of ChinaProject (2010ssxt237) supported by the Excellent Doctoral Thesis Program of Central South University,China
文摘The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditions,shear strength and concentrated surcharge load.The results obtained by 2D and 3D analyses were compared and the applicable scope of 2D and 3D method was analyzed.The results of the numerical simulation show that 3D effect is sensitive to the width of slip surface.As for slopes with specific geometry,3D effect is influenced by dimensionless parameter c/(γHtanφ).For those infinite slopes with local loading,external load has the major impact on failure mode.For those slopes with local loading and geometric constraints,the failure mode is influenced by both factors.With the increase of loading length,boundary condition exerts a more significant impact on the failure mode,and then 2D and 3D stability charts are developed,which provides a rapid and reliable way to calculate 2D and 3D factor of safety without iteration.Finally,a simple and practical calculation procedure based on the study of 3D effect and stability charts is proposed to recognize the right time to apply 2D or 3D method.
文摘A 3-DOF ultrasonic motor with a cylinder-shaped stator and a spherical rotor is developed. The motor provides 3-DOF rotation around x, y, and z-axes implemented by two second order bending modes with orthogonality and one first order longitudinal mode of the stator. The three modes must satisfy some conditions. In our previous research, in order to satisfy these conditions, a parameter fitting design method is used. However, it is an experiential design method with low efficiency and costs much time, sometimes it even cannot find a desired solution. This paper puts forward an optimal design method for the stator. Based on the method, an optimization program is developed in MATLAB environment. Using the program, a new prototype of 3-DOF ultrasonic motor is designed. Its stator has diameter of 20 mm, height of 67 mm, and mass of 157 g. Experimental results show that the measured stators′ modal frequencies and modal shapes are in good consistent agreement with the results obtained by the optimal design program.
基金funded by the Chinese Academy of Sciences(Grant No.KZCX2-XB3-09)the Ministry of Science and Technology of China(Grant No.2011BAD31B03)the National Natural Science Foundation of China(Grant Nos.41101259,41102224 and 41201275)
文摘Reservoir sedimentation dynamics were interpreted using Cs-137 activity, particle size and rainfall erosivity analysis in conjunetion with sediment profile coring. Two sediment cores were retrieved from the Changshou reservoir of Chongqing, which was dammed in 1956 at the outlet of Longxi catchment in the Three Gorges Area using a gravity corer equipped with an aerylie tube with an inner diameter of 6 em. The extracted cores were sectioned at 2 cm intervals. All sediment core samples were dried, sieved (〈2 mm) and weighed. 137Cs activity was measured by y-ray spectrometry. The particle size of the core samples was measured using laser particle size granulometry. Rainfall erosivity was calculated using daily rainfall data from meteorological records and information on soil conservation history was collated to help interpret temporal sedimentation trends. The peak fallout of 137Cs in 1963 appeared at a depth of 84 cm in core A and 56 cm in core B. The peaks of sand contents were related to the peaks of rainfall erosivity which were recorded in 1982, 1989, 1998 and 2005, respectively. Sedimentation rates were calculated according to the sediment profile chronological controls of 1956, 1963, 1982, 1989, 1998 and 2oo5. The highest sedimentation rate was around 2.0 cm·a^-1 between 1982 and 1988 when the Chinese national reform and the Household Responsibility System were implemented, leading to accelerated soil erosion in the Longxi catchment. Since 1990s, and particularly since 2005, sedimentation rates clearly decreased, since a number of soil conservation programs have been carried out in the catchment. The combined use of ^137Cs chronology, particle size and rainfall erosivity provided a simple basis for reconstructing reservoir sedimentation dynamics in the context of both physical processes and soil restoration. Its advantages include avoiding the need for full blown sediment yield reconstruction and the concomitant consideration of core correlation and corrections for autochthonous inputs and reservoir trap efficiency.
文摘Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending on location. Microscopic dynamics implies that H is over much smaller lengths than pocket universes to be understood as a local space reproduction rate. We illustrate this via discussing that even exponential inflation in TeV-gravity is slow on the relevant time scale. In our on small scales inhomogeneous cosmos, a reproduction rate H depends on position. We therefore discuss Einstein-Strauss vacuoles and a Lindquist-Wheeler like lattice to connect the local rate properly with the scaling of an expanding cosmos. Consistency allows H to locally depend on Weyl curvature similar to vacuum polarization. We derive a proportionality constant known from Kepler's third law and discuss the implications for the finiteness of the cosmological constant.
基金Supported by the National Natural Science Foundation of China (20676023).
文摘The instability mechanisms of the supported liquid membrane using Celgard 2500 membranes as support and tributyl phosphate dissolved in kerosene as carrier for phenol transport was studied by ele.etroehemical impedance spectroscopy. Emulsion formation is demonstrated to be one of the main causes for the instability of supported liquid membrane in the present system. The emulsion-facilitated conditions, such as higher membrane liquid concentration, faster stirring speed, lower salt concentration and higher HLB value, would accelerate the degradation of supported liquid membrane. Other mechanisms including solubility and osmotic pressure work together to increase the membrane liauid loss.
基金Project(61174002)supported by the National Natural Science Foundation of ChinaProject(200897)supported by the Foundation of National Excellent Doctoral Dissertation of PR China+1 种基金Project(NCET-10-0900)supported by the Program for New Century ExcellentTalents in University,ChinaProject(131061)supported by the Fok Ying Tung Education Foundation,China
文摘Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.However,two significant accelerometer nonlinear errors need to be attacked to improve the modulation effect.Firstly,the asymmetry scale factor inaccuracy enlarges the errors of frequent zero-cross oscillating specific force measured by non-axial accelerometers.Secondly,the traditional linear model of accelerometers can hardly measure the continued or intermittent acceleration accurately.These two nonlinear errors degrade the high-precision specific force measurement and the calibration of nonlinear coefficients because triaxial accelerometers is urgent for the marine navigation.Based on the digital signal sampling property,the square coefficients and cross-coupling coefficients of accelerometers are considered.Meanwhile,the asymmetry scale factors are considered in the I-F conversion unit.Thus,a nonlinear model of specific force measurement is established compared to the linear model.Based on the three-axis turntable,the triaxial gyroscopes are utilized to measure the specific force observation for triaxial accelerometers.Considering the nonlinear combination,the standard calibration parameters and asymmetry factors are separately estimated by a two-step iterative identification procedure.Besides,an efficient specific force calculation model is approximately derived to reduce the real-time computation cost.Simulation results illustrate the sufficient estimation accuracy of nonlinear coefficients.The experiments demonstrate that the nonlinear model shows much higher accuracy than the linear model in both the gravimetry and sway navigation validations.
文摘The Vietnamese Mekong Delta is located at the end of the Mekong River, one of the 10 largest rivers in the world. It plays an important role, especially in terms of food security for not only Vietnam but also the world. However, the Vietnamese Mekong Delta is projected to be heavily affected by: (1) the annual (fluvial) flood, which would be changed in terms of time and spatial distribution after impacts of climate change scenarios (i.e., sharper hydrograph with shorter flood period); and (2) sea level rise. Such combination would result in significant changes of surface water resources, leading to consequent impacts on the existing fanning systems in the Vietnamese Mekong Delta. Therefore, this paper presents a new approach of integrating a one-dimensional hydrodynamic model (ISIS-1 D) with GIS (Geographic Information System ) analyses to: (1) identify priority areas for flood adaptation and mitigation; (2) provide an insight to local decision-makers in the Vietnamese Mekong Delta in changes of future floods.
文摘Based on the analysis of the Boltzmann's distribution in an infinitely high temperature found degeneration of the thermodynamic system in a purely informational with independently of each particle on its energy level, thus providing them full visibility of and the ability to calculate the maximum entropy in the Boltzmann formula S∞ = R·InNA = 455.251 J/(mol.K). This value, when expressed in terms of fundamental constants, is itself a physical and chemical constants and mole monatomic ideal gas is unsurpassed in any studied temperature range. For complex substances this limit increases in direct proportion to their atomic. The existence of two limits entropy change--lower, equal to zero according to the third law of thermodynamics, and the top, equal to S∞, makes possible the explicit expression of the temperature dependence of the entropy in the form of an exponentialS=S∞exp[-5030.31p 2/5 /(M3/5T)](5/2)r e/s∞. rather than in the form of a logarithmic dependence of the infinite by the approximateformula Sakura-Tetrode with which this the dependence is almost identical in the studied temperature range (100-10,000 K), but not absurd negative entropy in the extrapolation formula Sakura-Tetrode absolute zero to the region and especially in the area of T → ∞where it turns S →∞.
基金Supported by the National Natural Science Foundation of China (No.61003236 61171053)+2 种基金the Doctoral Fund of Ministry of Education of China (No.20113223110002)the Natural Science Major Program for Colleges and Universities in Jiangsu Province (No.11KJA520001)Science & Technology Innovation Fund for higher education institutions of Jiangsu Province (CXZZ12_0481)
文摘During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which describes the relationship between the placement of beacon nodes and whether the node can be located in 3D indoor environment. In fact, as the highest locating accuracy can be acquired when the beacon nodes form one or more equilateral triangles in 2D plane, we generalizes this conclusion to 3D space, and proposes a beacon nodes selection algorithm based on the minimum condition number to get the higher locating accuracy, which can minimize the influence of distance measurement error. Simulation results show that the algorithm is effective and feasible.
文摘According to the data of preliminary survey, the authors established a landslide geological model,on the basis of analyses on the sensitivity of landslide, tried to simulate and calculate the landslide stability of Shuitianba with the method of transfer coefficient when it is under different strength parameters, and study the landslide mechanism. The results show that it is sensitive to the effects of shear strength parameters of sliding zone and groundwater level on landslide stability safety coefficient, which provides reliable basis for calculation of landslide stability.
基金supported by National Basic Research Program of China(Grant No.2014CB441404)the National Natural Science Foundation of China(Grant Nos.41375010,41075002,41305003)
文摘This paper reports the investigation of the location accuracy of a three-dimensional (3D) lightning-radiation-source locating system using sounding balloon measurements. By comparing the information from the balloon-borne VHF transmitter flight path and locations using simple geometric models, the location uncertainties of sources both over and outside the network were estimated. For radiation sources inside the network and below an altitude of 7 km, the horizontal uncertainty was 12-48 m and the total mean value was 21 m (rms), and the vertical uncertainty was 20-78 m and the total mean value was 49 m (rms). Outside the network, the location uncertainties increased with distance. The geometric model showed that range and altitude errors increased as a function of the range squared whereas the range errors increased parabolically with distance, and that was confirmed by the covariance calculation results. The standard deviation was used inside the network and covariance was used outside the network. The results indicated that location errors from a simple geometric model exhibited good agreement with standard experimental data. The geometry of the network, set of measurements, and calculation method were verified as suitable. The chi-square values of the least squares goodness of fit algorithm were verified and the timing error (A/rms) Of the fitting formula was estimated. The distribution of the chi-square values was less than 5, corresponding to a timing error of 50-66 ns (rms).
基金supported by the National Natural Science Foundation of China(Grant Nos.41374163,41374164,41174136,41204113,41127003,and 41321003)Chinese Academy of Sciences(Grant Nos.KZCX2-YW-Y10,KZZD-EW-01-3)the National Important Basic Research Project of China(Grant No.2011CB811405)
文摘Interferometry plays an important role in revealing fine-scale structures of ionospheric irregularity.By placing an additional receiving array of four 5-element Yagi antennas in the north of the main East-West array of the Sanya VHF radar,multiple interferometry baselines with components parallel and perpendicular to the magnetic meridian are formed.These baselines allow us to study the three-dimensional(3D)behavior of low-latitude ionospheric field-aligned irregularity(FAI)over Sanya.Using multiple non-collinear receiving baselines,an experiment for which the Sanya VHF radar operated as an interferometer was performed on 10 July 2013.Ionospheric E-region FAI echoes with periods of several minutes were observed during 0745-0915 UT;mean Doppler velocity was around -30 m/s with spectral widths of about 50 m/s.The interferometry results show fine-scale structures of E-region FAI with a zonal scale size of 15 km or less.In addition,we found that the periodic variations of echo intensity shown in radar range-time-intensity(RTI)maps were produced by spatially separated E-region irregularity patches.The patches drifted westward with a velocity of about 40-60 m/s and could be associated with propagating gravity waves.These results provide a clearer picture of the characteristics of FAI and thus help to investigate the generation and dynamics of low-latitude ionospheric irregularities in the Chinese sector.
基金Project supported by the National Key Technology R&D Program of China(Nos.2011BAI12B06 and 2012BAI14B06)the Fundamental Research Funds for the Central Universities,China(No.2013FZA5018)
文摘We present a high-definition (HD) 3D laparoscopic system including a dual channel optical system, two cameras, a camera control unit (CCU), and an HD 3D monitor. This laparoscopic system is capable of outputting dual high-definition videos and providing vivid 3D images. A modified pinhole camera model is used for camera calibration and a new method of depth measurement to improve precision. The average error of depth measurement measured by experiment (about 1.13 mm) was small in proportion to the large range in distance of the system (10-150 mm). The new method is applicable to any calibrated binocular vision system.