Several Doppler shift estimators, including mean logarithm envelope difference (MLED) method, auto-correlation function (ACF) method, zero crossing rate (ZCR) method and mean square phase difference (MSPD) method were...Several Doppler shift estimators, including mean logarithm envelope difference (MLED) method, auto-correlation function (ACF) method, zero crossing rate (ZCR) method and mean square phase difference (MSPD) method were discussed and compared. The estimation principle and theoretical estimation bias of these estimators under Rayleigh fading channels were analyzed; furthermore, the Cramer Rao bound (CRB) of Doppler shift estimation was deduced, and a novel modification method based on two-dimensional polynomial fitting was proposed to reduce the Doppler shift estimation bias. We verified our algorithms with the Monte Carlo computer simulation; simulation results showed better variance performance of modified methods than those of the original methods. In addition, the applicable situations of these estimators were discussed.展开更多
Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending ...Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending on location. Microscopic dynamics implies that H is over much smaller lengths than pocket universes to be understood as a local space reproduction rate. We illustrate this via discussing that even exponential inflation in TeV-gravity is slow on the relevant time scale. In our on small scales inhomogeneous cosmos, a reproduction rate H depends on position. We therefore discuss Einstein-Strauss vacuoles and a Lindquist-Wheeler like lattice to connect the local rate properly with the scaling of an expanding cosmos. Consistency allows H to locally depend on Weyl curvature similar to vacuum polarization. We derive a proportionality constant known from Kepler's third law and discuss the implications for the finiteness of the cosmological constant.展开更多
Sub-tidal barotropic current variations coupled with residual sea level fluctuation in the Bohai and Yellow Seas during wintertime are addressed in this study.The temporal evolution and spatial distribution of current...Sub-tidal barotropic current variations coupled with residual sea level fluctuation in the Bohai and Yellow Seas during wintertime are addressed in this study.The temporal evolution and spatial distribution of current fluctuation are investigated using moored acoustic Doppler current profiler data in a three-dimensional numerical model.It is found that a southward current followed by a northward current occurred in the northern Yellow Sea during the fluctuation,concurrent with a significant outflow followed by inflow through the Bohai Strait.The process is consistent from surface to bottom and is coupled with remarkable residual sea level fluctuation.This quasi three-day fluctuation with amplitude 0.2-0.3 m/s leads to 1 m/1.2 m drawdown in the northern Yellow and Bohai Seas,respectively,strongly influencing water exchange between those seas.Because this a prominent feature in the seas,it is necessary to evaluate its effect on fluctuation during winter in future studies,in particular,the northward current during the recovery phase of sea level in the Bohai and Yellow Seas regarding seasonal variation.展开更多
The famous three-body problem can be traced back to Isaac Newton in the 1680 s. In the 300 years since this "three-body problem"was first recognized, only three families of periodic solutions had been found,...The famous three-body problem can be traced back to Isaac Newton in the 1680 s. In the 300 years since this "three-body problem"was first recognized, only three families of periodic solutions had been found, until 2013 when ˇSuvakov and Dmitraˇsinovi′c [Phys.Rev. Lett. 110, 114301(2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found by Moore in 1993, the 11 families found by ˇSuvakov and Dmitraˇsinovi′c in 2013, and more than 600 new families that have never been reported, to the best of our knowledge. With the definition of the average period T = T=Lf, where Lf is the length of the so-called "free group element", these 695 families suggest that there should exist the quasi Kepler's third law T* ≈ 2:433 ± 0:075 for the considered case, where T*= T|E|^(3/2) is the scale-invariant average period and E is its total kinetic and potential energy,respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the "shape sphere"can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.展开更多
文摘Several Doppler shift estimators, including mean logarithm envelope difference (MLED) method, auto-correlation function (ACF) method, zero crossing rate (ZCR) method and mean square phase difference (MSPD) method were discussed and compared. The estimation principle and theoretical estimation bias of these estimators under Rayleigh fading channels were analyzed; furthermore, the Cramer Rao bound (CRB) of Doppler shift estimation was deduced, and a novel modification method based on two-dimensional polynomial fitting was proposed to reduce the Doppler shift estimation bias. We verified our algorithms with the Monte Carlo computer simulation; simulation results showed better variance performance of modified methods than those of the original methods. In addition, the applicable situations of these estimators were discussed.
文摘Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending on location. Microscopic dynamics implies that H is over much smaller lengths than pocket universes to be understood as a local space reproduction rate. We illustrate this via discussing that even exponential inflation in TeV-gravity is slow on the relevant time scale. In our on small scales inhomogeneous cosmos, a reproduction rate H depends on position. We therefore discuss Einstein-Strauss vacuoles and a Lindquist-Wheeler like lattice to connect the local rate properly with the scaling of an expanding cosmos. Consistency allows H to locally depend on Weyl curvature similar to vacuum polarization. We derive a proportionality constant known from Kepler's third law and discuss the implications for the finiteness of the cosmological constant.
基金Supported by the National Natural Science Foundation of China(Nos.41430963,41276013)
文摘Sub-tidal barotropic current variations coupled with residual sea level fluctuation in the Bohai and Yellow Seas during wintertime are addressed in this study.The temporal evolution and spatial distribution of current fluctuation are investigated using moored acoustic Doppler current profiler data in a three-dimensional numerical model.It is found that a southward current followed by a northward current occurred in the northern Yellow Sea during the fluctuation,concurrent with a significant outflow followed by inflow through the Bohai Strait.The process is consistent from surface to bottom and is coupled with remarkable residual sea level fluctuation.This quasi three-day fluctuation with amplitude 0.2-0.3 m/s leads to 1 m/1.2 m drawdown in the northern Yellow and Bohai Seas,respectively,strongly influencing water exchange between those seas.Because this a prominent feature in the seas,it is necessary to evaluate its effect on fluctuation during winter in future studies,in particular,the northward current during the recovery phase of sea level in the Bohai and Yellow Seas regarding seasonal variation.
基金supported by the National Natural Science Foundation of China(Grant No.11432009)
文摘The famous three-body problem can be traced back to Isaac Newton in the 1680 s. In the 300 years since this "three-body problem"was first recognized, only three families of periodic solutions had been found, until 2013 when ˇSuvakov and Dmitraˇsinovi′c [Phys.Rev. Lett. 110, 114301(2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found by Moore in 1993, the 11 families found by ˇSuvakov and Dmitraˇsinovi′c in 2013, and more than 600 new families that have never been reported, to the best of our knowledge. With the definition of the average period T = T=Lf, where Lf is the length of the so-called "free group element", these 695 families suggest that there should exist the quasi Kepler's third law T* ≈ 2:433 ± 0:075 for the considered case, where T*= T|E|^(3/2) is the scale-invariant average period and E is its total kinetic and potential energy,respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the "shape sphere"can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.