A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directl...A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.展开更多
To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean s...To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean square(LMS)method,a new logarithmic-sigmoid variable step-size LMS(LG-SVSLMS)was proposed and applied to estimate the direction of arrival(DOA)of orthogonal frequency division multiple access(OFDMA)signals.Based on the proposed LG-SVSLMS,a non-blind DOA estimation system for OFDMA signals was constructed.The proposed LG-SVSLMS adopts a new multi-parameter step-size update function which combines the sigmoid function and the logarithmic function.It controls the adjustment magnitude of step-size during the initial and steady state phases of the LMS method to achieve both a high convergence speed and low steady state maladjustment.Finally,simulation was conducted to verify the performance of the LG-SVSLMS.The simulation results show that the non-blind DOA estimation system based on the LG-SVSLMS can accurately estimate the DOA of the target signal in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal,and the estimation deviation is within±3°.The non-blind DOA estimation for OFDMA signals with the proposed LG-SVSLMS is of great significance for the instant positioning technology of mobile terminals based on the adaptive antenna array.展开更多
Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an...Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.展开更多
Based on the theories of three-dimensional elasticity and piezoelectricity, and by assuming appropriate boundary functions, we established a state equation of piezoelectric cylindrical shells. By using the transfer ma...Based on the theories of three-dimensional elasticity and piezoelectricity, and by assuming appropriate boundary functions, we established a state equation of piezoelectric cylindrical shells. By using the transfer matrix method, we presented an analytical solution that satisfies all the arbitrary boundary conditions at boundary edges, as well as on upper and bottom surfaces. Our solution takes into account all the independent elastic and piezoelectric constants for a piezoelectric orthotropy, and satisfies continuity conditions between plies of the laminates. The principle of the present method and corresponding results can be widely used in many engineering fields and be applied to assess the effectiveness of various approximate and numerical models.展开更多
The all-phase fast Fourier transform (apFFT) is proposed as a digital demodulation algorithm in place of the fast Fourier transform (FFT) for orthogonal frequency division multiplexing (OFDM) based multiple-input mult...The all-phase fast Fourier transform (apFFT) is proposed as a digital demodulation algorithm in place of the fast Fourier transform (FFT) for orthogonal frequency division multiplexing (OFDM) based multiple-input multiple-output (MIMO) communication systems. The amplitude spectrum of apFFT-demodulated symbols is the square of that of the FFT, which helps reduce the Gaussian noise to a great extent. Moreover, the phases of apFFT symbols are not affected by the frequency shift between the transmitter and receiver oscillators. These properties particularly appeal to MIMO systems over frequency-selective fading channels. The proposed MIMO-OFDM system employing the apFFT is validated using the spatial channel model (SCM) proposed by the third generation partnership project (3GPP). The simulation results demonstrate that the performance of the proposed system after compensating for the rate loss due to zero bits inserted in the space-frequency OFDM (SF-OFDM) coding scheme, still considerably outperforms the conventional system over 3GPP SCM channels, especially under poor channel conditions.展开更多
Judice and Pires developed in recent years principal pivoting methods for the solving of the so called box linear complementarity problems (BLCPs) where the constraint matrices are restrictedly supposed to be of P ...Judice and Pires developed in recent years principal pivoting methods for the solving of the so called box linear complementarity problems (BLCPs) where the constraint matrices are restrictedly supposed to be of P matrices. This paper aims at presenting a new principal pivoting scheme for BLCPs where the constraint matrices are loosely supposed to be row sufficient.This scheme can be applied to the solving of convex quadratic programs subject to linear constraints and arbitrary upper and lower bound constraints on variables.展开更多
In order to provide scientific support to policy makers in the regulation of PM2.5 pollution in China, it is important to accurately assess the current status, spatiotemporal characteristics and regionalization data f...In order to provide scientific support to policy makers in the regulation of PM2.5 pollution in China, it is important to accurately assess the current status, spatiotemporal characteristics and regionalization data for this air pollutant. An analysis of the pollution status of PM2.5 was conducted using daily averaged mass concentration data recorded in 74 cities in 2013 and 161 cities in 2014. The rotated empirical orthogonal function(REOF) method was applied to analyze this data. Results showed that the average annual PM2.5 concentration in urban areas of China is 62.2±21.5 ?g/m3, and that the distribution is spatially heterogeneous. The North China Plain, middle and lower Yangtze River Plain, Sichuan Basin and Guanzhong Plain had relatively high annual PM2.5 concentrations compared with the southeast coastal region, the Tibetan Plateau and the Yungui Plateau. PM2.5 mass concentrations tended to be higher in winter than in summer, however, the data for many cities showed a small peak in concentrations from May to July. An analysis of the spatial correlation of PM2.5 indicated a significant influence of topographic conditions. A lower correlation was observed where terrain features varied greatly. Based on the results of the REOF analysis and topographic characteristics, ten regions were identified in mid-eastern China, which could be considered as basic pollution prevention divisions for PM2.5; these include the North China Plain region, Pearl River Delta region, Jianghuai Plain region, middle Yangtze River Plain region, Northeast Plain region, Jiangnan coastal region, Sichuan Basin region, Qiantao Plain region, Guanzhong-Central Plain region and Yungui Plateau region. Seasonal variations in the regionalization data were observed, especially for the North China Plain and Pearl River Delta regions. Among the ten regions identified in this study, the North China Plain, Guanzhong-Central Plain, middle Yangtze River Plain and Jianghuai Plain had relatively high PM2.5 mass concentrations in comparison with the others. Therefore, these regions should be considered as the key regions to target in developing PM2.5 pollution prevention strategies. This study improves the present understanding of the spatial distribution, seasonal changes and regional status of PM2.5 pollution in China and helps establish possible control strategies for the reduction of this air pollutant.展开更多
基金The National Natural Science Foundation of China (No.61374194)
文摘A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.
基金The Social Development Projects of Jiangsu Science and Technology Department(No.BE2018704)the Technological Innovation Projects of Ministry of Public Security of China(No.20170001)。
文摘To meet the requirements of quick positioning of mobile terminals from base stations(BSs)or third-party devices,as well as to improve the convergence speed and reduce the steady state maladjustment of the least mean square(LMS)method,a new logarithmic-sigmoid variable step-size LMS(LG-SVSLMS)was proposed and applied to estimate the direction of arrival(DOA)of orthogonal frequency division multiple access(OFDMA)signals.Based on the proposed LG-SVSLMS,a non-blind DOA estimation system for OFDMA signals was constructed.The proposed LG-SVSLMS adopts a new multi-parameter step-size update function which combines the sigmoid function and the logarithmic function.It controls the adjustment magnitude of step-size during the initial and steady state phases of the LMS method to achieve both a high convergence speed and low steady state maladjustment.Finally,simulation was conducted to verify the performance of the LG-SVSLMS.The simulation results show that the non-blind DOA estimation system based on the LG-SVSLMS can accurately estimate the DOA of the target signal in the scenario where interference signals from multi-source and multi-path fading signals arrive at the third-party devices asynchronously with the target signal,and the estimation deviation is within±3°.The non-blind DOA estimation for OFDMA signals with the proposed LG-SVSLMS is of great significance for the instant positioning technology of mobile terminals based on the adaptive antenna array.
基金Projects(50934002,51074013,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.
基金Funded by the Natural Science Foundation of Anhui Province (No. 070414190)
文摘Based on the theories of three-dimensional elasticity and piezoelectricity, and by assuming appropriate boundary functions, we established a state equation of piezoelectric cylindrical shells. By using the transfer matrix method, we presented an analytical solution that satisfies all the arbitrary boundary conditions at boundary edges, as well as on upper and bottom surfaces. Our solution takes into account all the independent elastic and piezoelectric constants for a piezoelectric orthotropy, and satisfies continuity conditions between plies of the laminates. The principle of the present method and corresponding results can be widely used in many engineering fields and be applied to assess the effectiveness of various approximate and numerical models.
基金Supported by National Natural Science Foundation of China (No.60972054)National High-Tech R&D Program ("863"Program) of China(No.2009AA011507)
文摘The all-phase fast Fourier transform (apFFT) is proposed as a digital demodulation algorithm in place of the fast Fourier transform (FFT) for orthogonal frequency division multiplexing (OFDM) based multiple-input multiple-output (MIMO) communication systems. The amplitude spectrum of apFFT-demodulated symbols is the square of that of the FFT, which helps reduce the Gaussian noise to a great extent. Moreover, the phases of apFFT symbols are not affected by the frequency shift between the transmitter and receiver oscillators. These properties particularly appeal to MIMO systems over frequency-selective fading channels. The proposed MIMO-OFDM system employing the apFFT is validated using the spatial channel model (SCM) proposed by the third generation partnership project (3GPP). The simulation results demonstrate that the performance of the proposed system after compensating for the rate loss due to zero bits inserted in the space-frequency OFDM (SF-OFDM) coding scheme, still considerably outperforms the conventional system over 3GPP SCM channels, especially under poor channel conditions.
文摘Judice and Pires developed in recent years principal pivoting methods for the solving of the so called box linear complementarity problems (BLCPs) where the constraint matrices are restrictedly supposed to be of P matrices. This paper aims at presenting a new principal pivoting scheme for BLCPs where the constraint matrices are loosely supposed to be row sufficient.This scheme can be applied to the solving of convex quadratic programs subject to linear constraints and arbitrary upper and lower bound constraints on variables.
基金supported by the Special Funds of the State Environmental Protection Public Welfare Industry(201509001,201309016)the Transformation Project of China National Environmental Monitoring Center(2011ZX-010-001)
文摘In order to provide scientific support to policy makers in the regulation of PM2.5 pollution in China, it is important to accurately assess the current status, spatiotemporal characteristics and regionalization data for this air pollutant. An analysis of the pollution status of PM2.5 was conducted using daily averaged mass concentration data recorded in 74 cities in 2013 and 161 cities in 2014. The rotated empirical orthogonal function(REOF) method was applied to analyze this data. Results showed that the average annual PM2.5 concentration in urban areas of China is 62.2±21.5 ?g/m3, and that the distribution is spatially heterogeneous. The North China Plain, middle and lower Yangtze River Plain, Sichuan Basin and Guanzhong Plain had relatively high annual PM2.5 concentrations compared with the southeast coastal region, the Tibetan Plateau and the Yungui Plateau. PM2.5 mass concentrations tended to be higher in winter than in summer, however, the data for many cities showed a small peak in concentrations from May to July. An analysis of the spatial correlation of PM2.5 indicated a significant influence of topographic conditions. A lower correlation was observed where terrain features varied greatly. Based on the results of the REOF analysis and topographic characteristics, ten regions were identified in mid-eastern China, which could be considered as basic pollution prevention divisions for PM2.5; these include the North China Plain region, Pearl River Delta region, Jianghuai Plain region, middle Yangtze River Plain region, Northeast Plain region, Jiangnan coastal region, Sichuan Basin region, Qiantao Plain region, Guanzhong-Central Plain region and Yungui Plateau region. Seasonal variations in the regionalization data were observed, especially for the North China Plain and Pearl River Delta regions. Among the ten regions identified in this study, the North China Plain, Guanzhong-Central Plain, middle Yangtze River Plain and Jianghuai Plain had relatively high PM2.5 mass concentrations in comparison with the others. Therefore, these regions should be considered as the key regions to target in developing PM2.5 pollution prevention strategies. This study improves the present understanding of the spatial distribution, seasonal changes and regional status of PM2.5 pollution in China and helps establish possible control strategies for the reduction of this air pollutant.