通过溶剂热的方法在碳纤维布上生长了超薄片状结构的Bi2O3,并研究了该复合材料作为一种具有自支撑结构的锂离子电池负极的性能。通过X-射线衍射和扫描电子显微镜分析了材料的结构和形貌,通过循环伏安和充放电测试研究了该新型复合电极...通过溶剂热的方法在碳纤维布上生长了超薄片状结构的Bi2O3,并研究了该复合材料作为一种具有自支撑结构的锂离子电池负极的性能。通过X-射线衍射和扫描电子显微镜分析了材料的结构和形貌,通过循环伏安和充放电测试研究了该新型复合电极作为锂离子电池负极材料的性能。结果显示,尽管该复合电极在没有导电添加剂、粘结剂、金属集流体存在的情况下,仍表现出1350 m Ah/g的高比容量,在经过40次循环后,容量保持在679 m Ah/g,说明该复合电极具有优良的结构稳定性。展开更多
文摘通过溶剂热的方法在碳纤维布上生长了超薄片状结构的Bi2O3,并研究了该复合材料作为一种具有自支撑结构的锂离子电池负极的性能。通过X-射线衍射和扫描电子显微镜分析了材料的结构和形貌,通过循环伏安和充放电测试研究了该新型复合电极作为锂离子电池负极材料的性能。结果显示,尽管该复合电极在没有导电添加剂、粘结剂、金属集流体存在的情况下,仍表现出1350 m Ah/g的高比容量,在经过40次循环后,容量保持在679 m Ah/g,说明该复合电极具有优良的结构稳定性。