New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH...New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively.展开更多
A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks(MOFs)method under a mild liquid-phase reaction condition,and was further employed as an anode material for lithium-ion batteries(LIB...A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks(MOFs)method under a mild liquid-phase reaction condition,and was further employed as an anode material for lithium-ion batteries(LIBs).The effect of reaction temperature and time on morphologies of Sb2O3 was studied.The results from SEM and TEM demonstrate that the tremella-like Sb2O3 architecture are composed of numerous nanosheets with high specific surface area.When the tremella-like Sb2O3 was used as LIBs anode,the discharge and charge capacities can achieve 724 and 446 mA·h/g in the first cycle,respectively.Moreover,the electrode retains an impressive high capacity of 275 mA·h/g even after 50 cycles at 20 mA/g,indicating that the material is extremely promising for application in LIBs.展开更多
A systematic study was conducted on current efficiency (CE), corrosion and structural changes in SnO2-based inert anodes (made of 96wt%SnO2+2wt%Sb2O3+2wt%CuO) on a laboratory Hall-Heroult aluminium cell. The inf...A systematic study was conducted on current efficiency (CE), corrosion and structural changes in SnO2-based inert anodes (made of 96wt%SnO2+2wt%Sb2O3+2wt%CuO) on a laboratory Hall-Heroult aluminium cell. The influence of operating parameters and electrolyte composition on the CE and corrosion process were evaluated. The CE was found to be more than 90% and catastrophic corrosion took place at low percent of Al2O3, high percent of LiF, low cryolite ratio and high current densities. From all the structural changes that took place in the SnO2-based inert anodes, we assumed that the most important contribution was due to the migration of CuO towards the outer limits of the constituent grains of SnO2 based ceramic. The complex process occurred during the formation of various phases and their sintering ability both directly depended on Cu/Sb molar ratio.展开更多
The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficien...The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3(g) at a linear rate below850 °C, with activation energy of 137.18 k J/mol, and the reaction rate constant can be expressed as k=206901exp(-16.5/T). Stibnite can be decomposed into Sb and sulfur at temperature above 850 °C in a nitrogen atmosphere. However, in the presence of oxygen,stibnite is oxidized into Sb and SO2 gas at high temperature. Otherwise, Sb is oxidized quickly into antimony oxides such as Sb2O3 and Sb O2, while Sb2O3 can be volatilized efficiently at high temperature.展开更多
文摘New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively.
基金Project(51674114)supported by the National Natural Science Foundation of ChinaProject(2019JJ40069)supported by the Natural Science Foundation of Hunan Province,ChinaProject(16K025)supported by the Key Laboratory of the Education Department of Hunan Province,China
文摘A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks(MOFs)method under a mild liquid-phase reaction condition,and was further employed as an anode material for lithium-ion batteries(LIBs).The effect of reaction temperature and time on morphologies of Sb2O3 was studied.The results from SEM and TEM demonstrate that the tremella-like Sb2O3 architecture are composed of numerous nanosheets with high specific surface area.When the tremella-like Sb2O3 was used as LIBs anode,the discharge and charge capacities can achieve 724 and 446 mA·h/g in the first cycle,respectively.Moreover,the electrode retains an impressive high capacity of 275 mA·h/g even after 50 cycles at 20 mA/g,indicating that the material is extremely promising for application in LIBs.
文摘A systematic study was conducted on current efficiency (CE), corrosion and structural changes in SnO2-based inert anodes (made of 96wt%SnO2+2wt%Sb2O3+2wt%CuO) on a laboratory Hall-Heroult aluminium cell. The influence of operating parameters and electrolyte composition on the CE and corrosion process were evaluated. The CE was found to be more than 90% and catastrophic corrosion took place at low percent of Al2O3, high percent of LiF, low cryolite ratio and high current densities. From all the structural changes that took place in the SnO2-based inert anodes, we assumed that the most important contribution was due to the migration of CuO towards the outer limits of the constituent grains of SnO2 based ceramic. The complex process occurred during the formation of various phases and their sintering ability both directly depended on Cu/Sb molar ratio.
基金Project(51204210) supported by the National Natural Science Foundation of ChinaProject(2011AA061001) supported by the National High Technology Research and Development Program of ChinaProject(2012BAC12B04) supported by the National Science&Technology Pillar Program during Twelfth Five-Year Plan of China
文摘The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3(g) at a linear rate below850 °C, with activation energy of 137.18 k J/mol, and the reaction rate constant can be expressed as k=206901exp(-16.5/T). Stibnite can be decomposed into Sb and sulfur at temperature above 850 °C in a nitrogen atmosphere. However, in the presence of oxygen,stibnite is oxidized into Sb and SO2 gas at high temperature. Otherwise, Sb is oxidized quickly into antimony oxides such as Sb2O3 and Sb O2, while Sb2O3 can be volatilized efficiently at high temperature.