期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
Ritz神经网络求解微分方程的数值比较及敏感性分析
1
作者
史正梅
刘云美
范小林
《应用数学进展》
2024年第5期2380-2391,共12页
Ritz神经网络已经被广泛用来求解微分方程,其中关键一步是近似损失函数中所涉及的定积分, 因此求积方法的选取对神经网络逼近解尤为重要。 本文通过一些例子进行数值比较分析。 首先, 我们引入Dirichlet和Neumann边界的边值问题模型。 ...
Ritz神经网络已经被广泛用来求解微分方程,其中关键一步是近似损失函数中所涉及的定积分, 因此求积方法的选取对神经网络逼近解尤为重要。 本文通过一些例子进行数值比较分析。 首先, 我们引入Dirichlet和Neumann边界的边值问题模型。 其次,构造神经网络进行模型训练。 另外, 详细介绍复合楝形求积、 复合Simpson求积、 三点Gauss求积以及蒙特卡罗求积法。 然后,对算 例进行数值比较分析,结果表明三点Gauss求积方法更好。 最后对神经网络参数敏感性做进一步 研究,神经网络的精度随着训练集的增大而提高,当神经元数量达到4 时,再增加神经元数量并不 能明显提高精度,而增加隐藏层数量和更换激活函数并没有太大的影响。
展开更多
关键词
Ritz神经网络
复合楝形
求积
复合Simpson
求积
三点gauss求积
蒙特卡罗
求积
下载PDF
职称材料
题名
Ritz神经网络求解微分方程的数值比较及敏感性分析
1
作者
史正梅
刘云美
范小林
机构
贵州师范大学
出处
《应用数学进展》
2024年第5期2380-2391,共12页
文摘
Ritz神经网络已经被广泛用来求解微分方程,其中关键一步是近似损失函数中所涉及的定积分, 因此求积方法的选取对神经网络逼近解尤为重要。 本文通过一些例子进行数值比较分析。 首先, 我们引入Dirichlet和Neumann边界的边值问题模型。 其次,构造神经网络进行模型训练。 另外, 详细介绍复合楝形求积、 复合Simpson求积、 三点Gauss求积以及蒙特卡罗求积法。 然后,对算 例进行数值比较分析,结果表明三点Gauss求积方法更好。 最后对神经网络参数敏感性做进一步 研究,神经网络的精度随着训练集的增大而提高,当神经元数量达到4 时,再增加神经元数量并不 能明显提高精度,而增加隐藏层数量和更换激活函数并没有太大的影响。
关键词
Ritz神经网络
复合楝形
求积
复合Simpson
求积
三点gauss求积
蒙特卡罗
求积
分类号
O17 [理学—基础数学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
Ritz神经网络求解微分方程的数值比较及敏感性分析
史正梅
刘云美
范小林
《应用数学进展》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部