期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度卷积的残差三生网络研究与应用 被引量:1
1
作者 厉铮泽 杨小远 +1 位作者 朱日东 王敬凯 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第9期1864-1873,共10页
针对图像多分类任务,提出基于深度卷积的残差三生网络,旨在通过残差学习和距离比较来训练神经网络得到有效的特征表示。首先,设计了一个21层的深度卷积神经网络作为三生网络的嵌入网络,其中该卷积网络共连接6个块(block)。利用残差学习... 针对图像多分类任务,提出基于深度卷积的残差三生网络,旨在通过残差学习和距离比较来训练神经网络得到有效的特征表示。首先,设计了一个21层的深度卷积神经网络作为三生网络的嵌入网络,其中该卷积网络共连接6个块(block)。利用残差学习的方式,每个block的输出层由卷积层的输出和该block的输入共同组成,降低网络学习难度,避免网络出现退化问题。然后,每个block中采用相同拓扑结构分路的卷积层,拓宽网络的宽度。最后,在全连接层拼接了来自前面卷积层和block的输出,加强特征信息的传递。训练前,针对正负样本采用交叉组合的采样方法来增加有效训练样本量;训练期间,用样本中心点更换原点样本作为输入,能平均降低0. 5%错误率。在与其他三生网络的对比实验中,在MNIST、CIFAR10和SVHN数据库上达到最好的效果,在所有分类网络中,本文网络在MNIST上达到最好的效果,在CIFAR10和SVHN上表现优异。 展开更多
关键词 卷积神经网络 三生损失 残差学习 挑战性样本采样 样本中心点
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部