Changes in the daily maximum (Tmax) and minimum (Tmin) surface air temperatures and the associated temperature extremes have severe consequences on human society and the natural environment. In this study, we assess v...Changes in the daily maximum (Tmax) and minimum (Tmin) surface air temperatures and the associated temperature extremes have severe consequences on human society and the natural environment. In this study, we assess vegetation effects on mean Tmax and Tmin over China by computing a vegetation feedback parameter using the satellite-sensed Normalized Difference Vegetation Index (NDVI) and observed temperatures for the period 1982–2002. In all seasons, vegetation exerts a much stronger forcing on Tmax than on Tmin, and thus has a substantial effect on the diurnal temperature range (DTR) over China. Significant positive feedbacks on Tmax and the DTR occupy many areas of China with the feedback parameters exceeding 1°C (0.1 NDVI)–1, while significant negative effects only appear over the summertime climatic and ecological transition zone of northern China and some other isolated areas. Also, the vegetation feedbacks are found to vary with season. In areas where significant feedbacks occur, vegetation contributes to typically 10%–30% of the total variances in Tmax, Tmin, and the DTR. These findings suggest that vegetation memory offers the potential for improving monthly-to-seasonal forecasting of Tmax and Tmin, and the associated temperature extremes over China. Meanwhile, the limitations and uncertainties of the study should be recognized.展开更多
基金supported by the Hundred Talent Program of the Chinese Academy of Sciencesthe Special Fund for President’s Prize of the Chinese Academy of Sciencesthe National Basic Research Program of China (2009CB421405)
文摘Changes in the daily maximum (Tmax) and minimum (Tmin) surface air temperatures and the associated temperature extremes have severe consequences on human society and the natural environment. In this study, we assess vegetation effects on mean Tmax and Tmin over China by computing a vegetation feedback parameter using the satellite-sensed Normalized Difference Vegetation Index (NDVI) and observed temperatures for the period 1982–2002. In all seasons, vegetation exerts a much stronger forcing on Tmax than on Tmin, and thus has a substantial effect on the diurnal temperature range (DTR) over China. Significant positive feedbacks on Tmax and the DTR occupy many areas of China with the feedback parameters exceeding 1°C (0.1 NDVI)–1, while significant negative effects only appear over the summertime climatic and ecological transition zone of northern China and some other isolated areas. Also, the vegetation feedbacks are found to vary with season. In areas where significant feedbacks occur, vegetation contributes to typically 10%–30% of the total variances in Tmax, Tmin, and the DTR. These findings suggest that vegetation memory offers the potential for improving monthly-to-seasonal forecasting of Tmax and Tmin, and the associated temperature extremes over China. Meanwhile, the limitations and uncertainties of the study should be recognized.