The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control str...The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control strategy is presented, which is composed of an inner loop of capacitor current feedforward, an outer loop of grid-current feedforward and feedforward of grid voltage. The limitations and steps of parameters design for LCL filter are analyzed. Meanwhile, the capacitor current loop is employed to damp the resonant peak caused by the LCL filter and enhance the stability. The properties of different controllers are analyzed and compared, thereinto quasi-proportional-rasonant (PR) controller realizes the control with zero steady-state error of AC variables in static coordinates. In order to suppress the current distortion effected by the background harmonics in grid voltage, the feed-forward function is calculated for the grid-connected inverter with an LCL filter. After simplifying the block diagram, a full-feedforward control strategy for grid voltage is proposed. Theoretical analysis and Matlab/Simulink simulation results show that the proposed method has the advantages of high steady accuracy, fast dynamic response and strong robustness.展开更多
基金National Natural Science Foundation of China(No.51767014)China Railway Corporation of Science and Technology Research and Development Projects(No.2016J010-C)
文摘The grid-connected inverter with LCL filter has the ability of easily attenuating high-frequency current harmonics. However, its suppression effect on the background harmonics in grid voltage is limited. A control strategy is presented, which is composed of an inner loop of capacitor current feedforward, an outer loop of grid-current feedforward and feedforward of grid voltage. The limitations and steps of parameters design for LCL filter are analyzed. Meanwhile, the capacitor current loop is employed to damp the resonant peak caused by the LCL filter and enhance the stability. The properties of different controllers are analyzed and compared, thereinto quasi-proportional-rasonant (PR) controller realizes the control with zero steady-state error of AC variables in static coordinates. In order to suppress the current distortion effected by the background harmonics in grid voltage, the feed-forward function is calculated for the grid-connected inverter with an LCL filter. After simplifying the block diagram, a full-feedforward control strategy for grid voltage is proposed. Theoretical analysis and Matlab/Simulink simulation results show that the proposed method has the advantages of high steady accuracy, fast dynamic response and strong robustness.