Photocatalytic reduction of 6-chloro-3-nitrotoluene-4-sulfonic acid (CNSA) was studied in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. A mixture of CNSA, TiO2, water, additives and surfa...Photocatalytic reduction of 6-chloro-3-nitrotoluene-4-sulfonic acid (CNSA) was studied in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. A mixture of CNSA, TiO2, water, additives and surfactants was put into a quartz glass reactor with a jacket, which was irradiated with a high pressure Hg lamp in the purging of nitrogen gas. With methanol, the conversion of CNSA increased from 7.7% to 34.6%. Three surfactants significantly promoted the photocatalytic reduction conversion in reduced order of sodium dodecylbenzenesulfonate (DBS), cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). In suspensions involving DBS and CTAB respectively, CNSA conversion increased in consistence with the adsorption ratio with methanol, but varied inversely with the adsorption ratio without methanol. But no obvious influence on the adsorption ratio was observed with or without methanol added when the SDS concentration was critical micelle concentration (cmc). The photocatalytic reduction of CNSA was enhanced in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. Methanol inhibited the recombination of photogenerated holes and electrons efficiently. Surfactants around 1 cmc led to the highest reduction conversion.展开更多
基金Supported by Tianjin Science and Technology Committee (No. 033604711)Science and Technology Foundation of Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD) (No. 03-2-064)
文摘Photocatalytic reduction of 6-chloro-3-nitrotoluene-4-sulfonic acid (CNSA) was studied in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. A mixture of CNSA, TiO2, water, additives and surfactants was put into a quartz glass reactor with a jacket, which was irradiated with a high pressure Hg lamp in the purging of nitrogen gas. With methanol, the conversion of CNSA increased from 7.7% to 34.6%. Three surfactants significantly promoted the photocatalytic reduction conversion in reduced order of sodium dodecylbenzenesulfonate (DBS), cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). In suspensions involving DBS and CTAB respectively, CNSA conversion increased in consistence with the adsorption ratio with methanol, but varied inversely with the adsorption ratio without methanol. But no obvious influence on the adsorption ratio was observed with or without methanol added when the SDS concentration was critical micelle concentration (cmc). The photocatalytic reduction of CNSA was enhanced in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. Methanol inhibited the recombination of photogenerated holes and electrons efficiently. Surfactants around 1 cmc led to the highest reduction conversion.