期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于三维矫正和相似性学习的无约束人脸验证
1
作者 徐昕 梁久祯 《计算机应用》 CSCD 北大核心 2018年第10期2788-2793,2806,共7页
针对无约束条件下的人脸图像样本少、面部姿态变化大、被遮挡以及背景复杂等问题,提出一种结合三维人脸矫正与相似性学习相结合的人脸验证算法(sub-SL)。首先,通过三维人脸矫正方法对人脸图像进行姿态矫正,将图像中的人脸矫正为标准正面... 针对无约束条件下的人脸图像样本少、面部姿态变化大、被遮挡以及背景复杂等问题,提出一种结合三维人脸矫正与相似性学习相结合的人脸验证算法(sub-SL)。首先,通过三维人脸矫正方法对人脸图像进行姿态矫正,将图像中的人脸矫正为标准正面脸;其次,裁剪该正面脸的脸部相关区域,去除复杂的图像背景;最后,利用基于个体子空间的相似性学习方法对图像对之间的相似度进行度量,完成人脸验证。实验采用了几个以LFW(Labeled Faces in the Wild)数据库为基础的经过预处理操作(例如人脸矫正、裁剪等)后建立起来的数据库。在基于局部三值模式(LTP)的特征提取方法并且训练图像对数为625的实验中,sub-SL算法的识别率比利用马氏距离进行度量学习的算法sub-ML以及结合了马氏距离与相似性学习的度量学习算法sub-SML分别高出了15. 6%和8. 4%。实验结果表明,sub-SL算法能够有效提高无约束条件下人脸识别的准确率。 展开更多
关键词 无约束图像 人脸验证 三维人脸矫正 相似性学习 度量学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部