为提升磁性纳米粒子三维成像和重构速度,降低三维重构对采样投影数据完备性要求,针对含噪声投影数据三维重构优化问题,本文提出了一种具有噪声鲁棒性的三维磁性纳米粒子成像快速重构方法(noise-robust 3D sparse sampling magnetic part...为提升磁性纳米粒子三维成像和重构速度,降低三维重构对采样投影数据完备性要求,针对含噪声投影数据三维重构优化问题,本文提出了一种具有噪声鲁棒性的三维磁性纳米粒子成像快速重构方法(noise-robust 3D sparse sampling magnetic particle imaging,3D NRSS-MPI).该算法通过求解一个由MPI投影成像正向模型l2范数和稀疏正则约束建立的凸优化问题实现3D MPI图像重构.模型不受MPI扫描轨迹限制,为不断发展的MPI新技术提供了普适性的基础模型;建立的三维全变分稀疏算子(3D total variation sparse operator, 3D TV Sparse Operator)利用MPI先验信息提升含噪MPI投影数据三维重构的鲁棒性,且可以进行无矩阵运算,大幅提升了运算效率.通过点源和冠状血管模型成像实验表明,在1/4欠采样下,本文3D NRSS-MPI方法可以有效消除重构图像星状伪影,获取较高的图像信噪比,同时冠状动脉重建结构相似性超过0.701,可以准确地对欠采样、有噪声的MPI数据进行快速而稳健的重建,有效缩短了4倍成像和重构时间.展开更多
在高光谱图像(HSI)恢复中,如何在模型中有效嵌入先验信息和正确建模噪声一直是研究的两个重点。边信息作为一种基于域的先验知识已经在许多方向取得了成功,然而在高光谱去噪领域仍未受到关注。为了将这种领域知识与高光谱恢复模型自然耦...在高光谱图像(HSI)恢复中,如何在模型中有效嵌入先验信息和正确建模噪声一直是研究的两个重点。边信息作为一种基于域的先验知识已经在许多方向取得了成功,然而在高光谱去噪领域仍未受到关注。为了将这种领域知识与高光谱恢复模型自然耦合,提出的方法采用双线性映射的方式将边信息链接到表示观测数据潜在低秩结构的底层矩阵,并使用E-3DTV(enhanced 3-D total variation)正则编码了HSI局部平滑先验。此外该方法使用L p范数进行噪声建模,进一步增强对腐败的鲁棒性。该方法在两个数据集、七种加噪方式下与五种竞争方法在三个数值指标上进行了比较,结果充分反映了提出方法对复杂噪声场景的有效性和鲁棒性。展开更多
文摘为提升磁性纳米粒子三维成像和重构速度,降低三维重构对采样投影数据完备性要求,针对含噪声投影数据三维重构优化问题,本文提出了一种具有噪声鲁棒性的三维磁性纳米粒子成像快速重构方法(noise-robust 3D sparse sampling magnetic particle imaging,3D NRSS-MPI).该算法通过求解一个由MPI投影成像正向模型l2范数和稀疏正则约束建立的凸优化问题实现3D MPI图像重构.模型不受MPI扫描轨迹限制,为不断发展的MPI新技术提供了普适性的基础模型;建立的三维全变分稀疏算子(3D total variation sparse operator, 3D TV Sparse Operator)利用MPI先验信息提升含噪MPI投影数据三维重构的鲁棒性,且可以进行无矩阵运算,大幅提升了运算效率.通过点源和冠状血管模型成像实验表明,在1/4欠采样下,本文3D NRSS-MPI方法可以有效消除重构图像星状伪影,获取较高的图像信噪比,同时冠状动脉重建结构相似性超过0.701,可以准确地对欠采样、有噪声的MPI数据进行快速而稳健的重建,有效缩短了4倍成像和重构时间.
文摘在高光谱图像(HSI)恢复中,如何在模型中有效嵌入先验信息和正确建模噪声一直是研究的两个重点。边信息作为一种基于域的先验知识已经在许多方向取得了成功,然而在高光谱去噪领域仍未受到关注。为了将这种领域知识与高光谱恢复模型自然耦合,提出的方法采用双线性映射的方式将边信息链接到表示观测数据潜在低秩结构的底层矩阵,并使用E-3DTV(enhanced 3-D total variation)正则编码了HSI局部平滑先验。此外该方法使用L p范数进行噪声建模,进一步增强对腐败的鲁棒性。该方法在两个数据集、七种加噪方式下与五种竞争方法在三个数值指标上进行了比较,结果充分反映了提出方法对复杂噪声场景的有效性和鲁棒性。