Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves....Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves. The sound source’s components and focusing mechanism were all analyzed. A model was built in 3D Max and wave strength was measured on the simulation platform. Error analysis was fully integrated into the model so that effects on sound focusing performance of processing-errors and installation-errors could be studied. Based on what was practical, ways to limit the errors were proposed. The results of the error analysis should guide the design, machining, placement, debugging and application of underwater plasma sound sources.展开更多
Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a li...Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a liquid-solid interface. By changing laser power density and target size, the temperature field variation of the metal target is investigated. Results show that the generation process of nanoparticles includes heating, melting and boiloff.展开更多
Three-dimensional(3D)nonlinear diving guidance strategy considering the coupling between longitudinal and lateral motions for hypersonic vehicle is investigated in this paper.It constructs the complete nonlinear coupl...Three-dimensional(3D)nonlinear diving guidance strategy considering the coupling between longitudinal and lateral motions for hypersonic vehicle is investigated in this paper.It constructs the complete nonlinear coupling motion equation without any approximations based on diving relative motion relationship directly,and converts it into linear state space equation with the same relative degree by feedback linearization.With the linear equation,slide mode control with strong robustness is employed to design the guidance law,and 3D diving guidance law which can satisfy terminal impact point and falling angle constraints with high precision is obtained by substituting the previous control law into the origin nonlinear guidance system.Besides,regarding lateral overload as the standard,hybrid control strategy which can take full advantage of the excellent characters of both bank-to-turn(BTT)and skid-to-turn(STT)controls is designed to improve the guidance accuracy further.Finally,the results of CAV-H vehicle guidance test show that the algorithm can realize high accuracy guidance even if serious motion coupling exists,and has strong robustness to the path disturbances and navigation errors as well.展开更多
基金Supported by the National Natural Science Foundation under Grant No.60572098
文摘Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves. The sound source’s components and focusing mechanism were all analyzed. A model was built in 3D Max and wave strength was measured on the simulation platform. Error analysis was fully integrated into the model so that effects on sound focusing performance of processing-errors and installation-errors could be studied. Based on what was practical, ways to limit the errors were proposed. The results of the error analysis should guide the design, machining, placement, debugging and application of underwater plasma sound sources.
基金Supported by National Natural Science Foundation of China(No.50902103)
文摘Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a liquid-solid interface. By changing laser power density and target size, the temperature field variation of the metal target is investigated. Results show that the generation process of nanoparticles includes heating, melting and boiloff.
基金supported by the National Natural Science Foundation of China(Grant No.61104200)the National University of Defense Technology Innovation Foundation for Postgraduates(Grant No.B140103)
文摘Three-dimensional(3D)nonlinear diving guidance strategy considering the coupling between longitudinal and lateral motions for hypersonic vehicle is investigated in this paper.It constructs the complete nonlinear coupling motion equation without any approximations based on diving relative motion relationship directly,and converts it into linear state space equation with the same relative degree by feedback linearization.With the linear equation,slide mode control with strong robustness is employed to design the guidance law,and 3D diving guidance law which can satisfy terminal impact point and falling angle constraints with high precision is obtained by substituting the previous control law into the origin nonlinear guidance system.Besides,regarding lateral overload as the standard,hybrid control strategy which can take full advantage of the excellent characters of both bank-to-turn(BTT)and skid-to-turn(STT)controls is designed to improve the guidance accuracy further.Finally,the results of CAV-H vehicle guidance test show that the algorithm can realize high accuracy guidance even if serious motion coupling exists,and has strong robustness to the path disturbances and navigation errors as well.