期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
目标成本三维分解法在梁北煤矿材料管理中的应用探讨
1
作者 陈磊 白吉磊 +1 位作者 张欣 李文峰 《中国科技投资》 2021年第17期17-18,共2页
本文以生产成本可控的主要因素,进行多维度实践探讨,形成目标成本三维分解法,在三维分解法实施中,着重对区队生产任务、材料预算量化、材料单耗分析三者的关联性进行量化处理,对于整体生产成本管控和原材料控制来说,是一次有积极创造性... 本文以生产成本可控的主要因素,进行多维度实践探讨,形成目标成本三维分解法,在三维分解法实施中,着重对区队生产任务、材料预算量化、材料单耗分析三者的关联性进行量化处理,对于整体生产成本管控和原材料控制来说,是一次有积极创造性的探索。 展开更多
关键词 目标成本 三维分解法 材料管理 应用
下载PDF
Analytical Investigation of Soliton Solutions to Three Quantum Zakharov-Kuznetsov Equations 被引量:2
2
作者 Rahmatullah Ibrahim Nuruddeen Khalid Suliman Aboodh Khalid K. Ali 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第10期405-412,共8页
In the present paper, the two-dimensional quantum Zakharov-Kuznetsov(QZK) equation, three-dimensional quantum Zakharov-Kuznetsov equation and the three-dimensional modified quantum Zakharov-Kuznetsov equation are anal... In the present paper, the two-dimensional quantum Zakharov-Kuznetsov(QZK) equation, three-dimensional quantum Zakharov-Kuznetsov equation and the three-dimensional modified quantum Zakharov-Kuznetsov equation are analytically investigated for exact solutions using the modified extended tanh-expansion based method. A variety of new and important soliton solutions are obtained including the dark soliton solution, singular soliton solution, combined dark-singular soliton solution and many other trigonometric function solutions. The used method is implemented on the Mathematica software for the computations as well as the graphical illustrations. 展开更多
关键词 two-dimensional QZK equation three-dimensional QZK equations soliton solutions
原文传递
A PRECONDITIONER FOR THREE-DIMENSIONAL DOMAIN DECOMPOSITION METHODS WITH LAGRANGE MULTIPLIERS
3
作者 HUQiya LIANGGuoping LIUJinzhao 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2003年第4期513-526,共14页
In this paper we consider domain decomposition methods for three-dimensional elliptic problems with Lagrange multipliers, and construct a kind of simple preconditioner for the corresponding interface equation. It will... In this paper we consider domain decomposition methods for three-dimensional elliptic problems with Lagrange multipliers, and construct a kind of simple preconditioner for the corresponding interface equation. It will be shown that condition number of the resulting preconditioned interface matrix is almost optimal. 展开更多
关键词 domain decomposition non-matching grids lagrange multipliers PRECONDITIONER condition number
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部