针对传统的块匹配去噪方法只能处理二维图像的缺点,提出一种基于三维剪切波变换和改进的三维块匹配过滤(block-matching and 4D filtering,BM4D)算法的图像去噪方法。利用三维剪切波变换得到变换域系数,通过硬阈值和维纳滤波,在变换域...针对传统的块匹配去噪方法只能处理二维图像的缺点,提出一种基于三维剪切波变换和改进的三维块匹配过滤(block-matching and 4D filtering,BM4D)算法的图像去噪方法。利用三维剪切波变换得到变换域系数,通过硬阈值和维纳滤波,在变换域中实现联合过滤。经过多尺度分解和方向剖分两个滤波阶段,确保三维剪切波变换是局部的;进行硬阈值和维纳滤波,分别包括分组、协同过滤和聚合3个步骤,利用堆积成四维组的体素立方体,在该组的四维变换同时利用每个立方体中体素之间存在的局部相关性和不同立方体中相应体素之间的非局部相关性。通过三维剪切波逆变换,得到每个分组立方体的估计值,在它们的原始位置进行自适应聚合。以峰值信噪比和结构相似度作为评价标准,试验结果表明:该方法不仅能够有效去除高噪声环境下的图像噪声,而且还能够有效地改善图像的视觉效果,具有较高的准确性。展开更多
文摘针对传统的块匹配去噪方法只能处理二维图像的缺点,提出一种基于三维剪切波变换和改进的三维块匹配过滤(block-matching and 4D filtering,BM4D)算法的图像去噪方法。利用三维剪切波变换得到变换域系数,通过硬阈值和维纳滤波,在变换域中实现联合过滤。经过多尺度分解和方向剖分两个滤波阶段,确保三维剪切波变换是局部的;进行硬阈值和维纳滤波,分别包括分组、协同过滤和聚合3个步骤,利用堆积成四维组的体素立方体,在该组的四维变换同时利用每个立方体中体素之间存在的局部相关性和不同立方体中相应体素之间的非局部相关性。通过三维剪切波逆变换,得到每个分组立方体的估计值,在它们的原始位置进行自适应聚合。以峰值信噪比和结构相似度作为评价标准,试验结果表明:该方法不仅能够有效去除高噪声环境下的图像噪声,而且还能够有效地改善图像的视觉效果,具有较高的准确性。