As an advanced composite material, the 3D braided composite has received more and more attention in foreign countries. However, it has received less attention in China. The geometric unit cell which can describe the b...As an advanced composite material, the 3D braided composite has received more and more attention in foreign countries. However, it has received less attention in China. The geometric unit cell which can describe the basic structure and the relationship between the braiding angle and geometric parameters of the fabric and fiber volume ratio are given in this paper based on two 3D braiding processes, namely, the four-step and the twostep ones. Several existing mechanical models to predict groperties of the 3D braided comPOsites are discussed and their shortcomings are pointed out herein. Then a new model called the inclined laminal combination model is proposed, which is based on the classical laminated plate theory and can predict the basic mechanical behavior of the two 3D braided composites with four-step or two-step braid. In the model, each yarn in the unit cell is regarded as an inclined laminate and then a 3D analysis is performed. It is found that the predicted mechanical properties of the 3D braided composites by the proposed model are compared well with the experimental data.展开更多
A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using h...A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using hourly measured data of sediment contents during 25–26, July 1999. The results showed that modeled contents matched well with measured ones and that the modeled top layer distribution agreed with the remotely sensed image of suspended solids in summer. The modeled results showed clearly the layers of sus- pended solids in depth, with larger sediment contents in lower layers though in the interface between salt water and freshwater the lowest contents appeared in middle layer. In overall, the suspended solids inflow from 8 rivers, transport southwestward, and carried by strong coastal flow in Zhujiang River estuary. Contours of sediment contents in the estuary spread further to the open sea during ebb tide rather than flood tide which reflects that the suspended solids in the estuary are land sourced.展开更多
The circulations off the Changjiang mouth in May and November were simulated by a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (...The circulations off the Changjiang mouth in May and November were simulated by a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjiang discharge is much larger in May than in November, and the wind is westward in May, and southward in November off the Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoffnear the mouth and the TWC offthe mouth, and the runoff and TWC are greater in May than in November.展开更多
Based on statistical damage mechanics,the constitutive model of a rock underthree-dimensional stress was established by the law that the statistical strength of rockmicro-element obeys Weibull distribution.The acousti...Based on statistical damage mechanics,the constitutive model of a rock underthree-dimensional stress was established by the law that the statistical strength of rockmicro-element obeys Weibull distribution.The acoustic emission (AE) evolution model ofrock failure was put forward according to the view that rock damage and AE were consistent.Moreover,in the failure process of rock under three-dimensional stress,the change inrelationship between stress condition parameter and the characteristic parameters of AE,such as the event number and its change rate,were studied.Also,the rock AE characteristicunder uniaxial compression was analyzed in theory and verified with examples.Theresults indicate that the cumulative event number and change rate of AE in rock failure aredetermined by stress state parameter F.Along with the gradual increase of F,first the cumulativeevent number increases gradually,then rapidly,and then slowly after the stresspeak.The form of change rate of an event by increasing F is consistent with the distributionform of rock micro-element strength.The model explained the phenomenon that a relativelyquiet period of AE appears before rock rupture that is observed by many researchersin experiments.Verification examples indicate that the AE evolution model is consistentwith the test results,so the model is reasonable and correct.展开更多
A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static...A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.展开更多
In this study, a three-dimensional model based on RANS, slender-body theory and Newton-Euler dynamics is established to study the number concentration, one of the most important fluidization characteristics of cylindr...In this study, a three-dimensional model based on RANS, slender-body theory and Newton-Euler dynamics is established to study the number concentration, one of the most important fluidization characteristics of cylindrical particles. Also, the effects of interaction between cylindrical particles are taken into account by introducing the rigid collision dynamics. To validate the model, the fluidization experiments of cylindrical particles in a cold-state fluidized bed are carried out. The number concentration characteristics of cylindrical particles are obtained from computational fluid dynamics (CFD) simulation. It is found that cylindrical particles arriving at the exit of the riser the earliest come from the near-wall regions, the horizontal transfer of so many cylindrical particles from the radial centre regions to the near-wall regions is evident. Meanwhile, there is no distinct relationship between the number concentration and inlet wind velocity.展开更多
Objective. To investigate the biomechanical aspects of etiology,pathology, clinical manifestation, diagnosis and surgical treatment of the lumbar spinal stenosis. Methods’ A series of biomechanical methods, such as t...Objective. To investigate the biomechanical aspects of etiology,pathology, clinical manifestation, diagnosis and surgical treatment of the lumbar spinal stenosis. Methods’ A series of biomechanical methods, such as three-dimensional finite element models. three-dimensional kinematic measurement, cadeveric evaluation, and imaging assessment was applied to correlate lumbar biomechanics and lumbar spinal stenosis. Surgery of lumbar spinal stenosis has been improved. Results. The stresses significantly concentrate on the posterolateral part of the annulus fibrosus of disc, the posterior surface of vertebral body, the pedicle, the interarticularis and the facet joints. This trend is intensified by disc degeneration and lumbar backward extension. Posterior element resection has a definite effect upon the biomechanical behavior of lumbar vertebrae. The improved operations proved satis- factory. Conclusion. Stress concentration in the lumbar vertebrae is of importance to the etiology of degenerative lumbar spinal stenosis, and disc degeneration is the initial key of this process. Then these will be aggravated by backward extension. Functional radiography and myelography are of assistance to the diagnosis o f the lumbar spinal stenosis. For the surgical treatment of the lumbar spinal stenosis, destruction of the posterior element should be avoid as far as possible based upon the thorough decompression. Maintaining the lumbar spine in flexion by fusion after decompression has been proved a useful method. When developmental spinal stenosis is combined with disc herniation, discectomy through laminotomy is recommend for decompression.展开更多
Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D...Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake.展开更多
Based on the phenomenon that acoustic emissions (AE) generated by rock mass increase suddenly because of underground excavation, time sequence of AE rate in rock failure has been discussed by using statistical damage ...Based on the phenomenon that acoustic emissions (AE) generated by rock mass increase suddenly because of underground excavation, time sequence of AE rate in rock failure has been discussed by using statistical damage theory. It has been demonstrated that how the influence of confining pressure on the deformation behavior and AE characteristics in rocks can be inferred from a simple mechanics model. The results show that loading confining pressure sharply brings out increasing of AE. On the other hand, few AE emits when confining pressure is loaded sharply, and AE occurs again when axial pressure keeps on increasing. These results have been well simulated with computer and show close correspondence with directly measured curves in experiments.展开更多
Cold rotary forging is an advanced and complex metal forming technology with continuous local plastic deformation.Investigating the contact force between the dies and the workpiece has a great significance to improve ...Cold rotary forging is an advanced and complex metal forming technology with continuous local plastic deformation.Investigating the contact force between the dies and the workpiece has a great significance to improve the life of the dies in cold rotary forging.The purpose of this work is to reveal the contact force responses in cold rotary forging through the modelling and simulation.For this purpose,a 3D elastic-plastic dynamic explicit FE model of cold rotary forging is developed using the FE code ABAQUS/Explicit.Through the modelling and simulation,the distribution and evolution of the contact force in cold rotary forging is investigated in detail.The experiment has been conducted and the validity of the 3D FE model of cold rotary forging has been verified.The results show that: 1) The contact force distribution is complex and exhibits an obvious non-uniform characteristic in the radial and circumferential directions; 2) The maximum contact force between the upper die and the workpiece is much larger than that between the lower die and the workpiece; 3) The contact force evolution history is periodic and every period experiences three different stages; 4) The total normal contact force is much larger than the total shear contact force at any given time.展开更多
In this paper a 3D numerical model was developed to study the complicated interaction between waves and a set of tandem fixed cylinders.The fluid was considered to be inviscid and irrotational.Therefore,the Helmholtz ...In this paper a 3D numerical model was developed to study the complicated interaction between waves and a set of tandem fixed cylinders.The fluid was considered to be inviscid and irrotational.Therefore,the Helmholtz equation was used as a governing equation.The boundary element method(BEM) was adopted to discretize the relevant equations.Open boundaries were used in far fields of the study domain.Linear waves were generated and propagated towards tandem fixed cylinders to estimate the forces applied on them.Special attention was paid to consideration of the effect on varying non-dimensional cylinder radius and distance between cylinders,ka and kd on forces and trapped modes.The middle cylinder wave forces and trapped modes in a set of nine tandem cylinders were validated utilizing analytical data.The comparisons confirm the accuracy of the model.The results of the inline wave force estimation on n tandem cylinders show that the critical cylinder in the row is the middle one for odd numbers of cylinders.Furthermore the results show that the critical trapped mode effect occurs for normalized cylinder radiuses close to 0.5 and 1.0.Finally the force estimation for n tandem cylinders confirms that force amplitude of the middle cylinder versus normalized separation distance fluctuates about that of a single cylinder.展开更多
文摘As an advanced composite material, the 3D braided composite has received more and more attention in foreign countries. However, it has received less attention in China. The geometric unit cell which can describe the basic structure and the relationship between the braiding angle and geometric parameters of the fabric and fiber volume ratio are given in this paper based on two 3D braiding processes, namely, the four-step and the twostep ones. Several existing mechanical models to predict groperties of the 3D braided comPOsites are discussed and their shortcomings are pointed out herein. Then a new model called the inclined laminal combination model is proposed, which is based on the classical laminated plate theory and can predict the basic mechanical behavior of the two 3D braided composites with four-step or two-step braid. In the model, each yarn in the unit cell is regarded as an inclined laminate and then a 3D analysis is performed. It is found that the predicted mechanical properties of the 3D braided composites by the proposed model are compared well with the experimental data.
基金This research was funded by The National Science Fund for Distin-guished Young Scholars (Estuarine and Coastal Studies 40225014) and The National Hi-Tech Research Fund (818-09-01-04).
文摘A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using hourly measured data of sediment contents during 25–26, July 1999. The results showed that modeled contents matched well with measured ones and that the modeled top layer distribution agreed with the remotely sensed image of suspended solids in summer. The modeled results showed clearly the layers of sus- pended solids in depth, with larger sediment contents in lower layers though in the interface between salt water and freshwater the lowest contents appeared in middle layer. In overall, the suspended solids inflow from 8 rivers, transport southwestward, and carried by strong coastal flow in Zhujiang River estuary. Contours of sediment contents in the estuary spread further to the open sea during ebb tide rather than flood tide which reflects that the suspended solids in the estuary are land sourced.
文摘The circulations off the Changjiang mouth in May and November were simulated by a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjiang discharge is much larger in May than in November, and the wind is westward in May, and southward in November off the Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoffnear the mouth and the TWC offthe mouth, and the runoff and TWC are greater in May than in November.
基金Supported by the Key Program of National Basic Research Program(973)of China(2005CB221505)the National Natural Science Foundation of China(2005E041503)
文摘Based on statistical damage mechanics,the constitutive model of a rock underthree-dimensional stress was established by the law that the statistical strength of rockmicro-element obeys Weibull distribution.The acoustic emission (AE) evolution model ofrock failure was put forward according to the view that rock damage and AE were consistent.Moreover,in the failure process of rock under three-dimensional stress,the change inrelationship between stress condition parameter and the characteristic parameters of AE,such as the event number and its change rate,were studied.Also,the rock AE characteristicunder uniaxial compression was analyzed in theory and verified with examples.Theresults indicate that the cumulative event number and change rate of AE in rock failure aredetermined by stress state parameter F.Along with the gradual increase of F,first the cumulativeevent number increases gradually,then rapidly,and then slowly after the stresspeak.The form of change rate of an event by increasing F is consistent with the distributionform of rock micro-element strength.The model explained the phenomenon that a relativelyquiet period of AE appears before rock rupture that is observed by many researchersin experiments.Verification examples indicate that the AE evolution model is consistentwith the test results,so the model is reasonable and correct.
基金Projects(51804113,51434006,51874130)supported by the National Natural Science Foundation of ChinaProject(E51768)supported by the Doctoral Initiation Foundation of Hunan University of Science and Technology,China+1 种基金Project(E61610)supported by the Postdoctoral Research Foundation of Hunan University of Science and Technology,ChinaProject(E21734)supported by the Open Foundation of Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines,China
文摘A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.
基金Supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province(2011112TSJ0149)Jiangsu Key Laboratory of Process Enhancement & New Energy Equipment Technology at Nanjing University of Technology,China
文摘In this study, a three-dimensional model based on RANS, slender-body theory and Newton-Euler dynamics is established to study the number concentration, one of the most important fluidization characteristics of cylindrical particles. Also, the effects of interaction between cylindrical particles are taken into account by introducing the rigid collision dynamics. To validate the model, the fluidization experiments of cylindrical particles in a cold-state fluidized bed are carried out. The number concentration characteristics of cylindrical particles are obtained from computational fluid dynamics (CFD) simulation. It is found that cylindrical particles arriving at the exit of the riser the earliest come from the near-wall regions, the horizontal transfer of so many cylindrical particles from the radial centre regions to the near-wall regions is evident. Meanwhile, there is no distinct relationship between the number concentration and inlet wind velocity.
基金This project was supported by the National Natural ScienceFoundation of China.
文摘Objective. To investigate the biomechanical aspects of etiology,pathology, clinical manifestation, diagnosis and surgical treatment of the lumbar spinal stenosis. Methods’ A series of biomechanical methods, such as three-dimensional finite element models. three-dimensional kinematic measurement, cadeveric evaluation, and imaging assessment was applied to correlate lumbar biomechanics and lumbar spinal stenosis. Surgery of lumbar spinal stenosis has been improved. Results. The stresses significantly concentrate on the posterolateral part of the annulus fibrosus of disc, the posterior surface of vertebral body, the pedicle, the interarticularis and the facet joints. This trend is intensified by disc degeneration and lumbar backward extension. Posterior element resection has a definite effect upon the biomechanical behavior of lumbar vertebrae. The improved operations proved satis- factory. Conclusion. Stress concentration in the lumbar vertebrae is of importance to the etiology of degenerative lumbar spinal stenosis, and disc degeneration is the initial key of this process. Then these will be aggravated by backward extension. Functional radiography and myelography are of assistance to the diagnosis o f the lumbar spinal stenosis. For the surgical treatment of the lumbar spinal stenosis, destruction of the posterior element should be avoid as far as possible based upon the thorough decompression. Maintaining the lumbar spine in flexion by fusion after decompression has been proved a useful method. When developmental spinal stenosis is combined with disc herniation, discectomy through laminotomy is recommend for decompression.
基金Foundation item: Project(IRTl125) supported by the Program for Changjiang Scholars and Innovative Research Team in Universities of China Project(B13024) supported by the "111" Project Project(BK2012811) supported by the Natural Science Foundation of Jiangsu Province, China
文摘Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake.
文摘Based on the phenomenon that acoustic emissions (AE) generated by rock mass increase suddenly because of underground excavation, time sequence of AE rate in rock failure has been discussed by using statistical damage theory. It has been demonstrated that how the influence of confining pressure on the deformation behavior and AE characteristics in rocks can be inferred from a simple mechanics model. The results show that loading confining pressure sharply brings out increasing of AE. On the other hand, few AE emits when confining pressure is loaded sharply, and AE occurs again when axial pressure keeps on increasing. These results have been well simulated with computer and show close correspondence with directly measured curves in experiments.
基金Project(51105287)supported by the National Natural Science Foundation of ChinaProject(2012BAA08003)supported by the Key Research and Development Project of New Products and New Technologies of Hubei Province,ChinaProject(2013M531750)supported by China Postdoctoral Science Foundation
文摘Cold rotary forging is an advanced and complex metal forming technology with continuous local plastic deformation.Investigating the contact force between the dies and the workpiece has a great significance to improve the life of the dies in cold rotary forging.The purpose of this work is to reveal the contact force responses in cold rotary forging through the modelling and simulation.For this purpose,a 3D elastic-plastic dynamic explicit FE model of cold rotary forging is developed using the FE code ABAQUS/Explicit.Through the modelling and simulation,the distribution and evolution of the contact force in cold rotary forging is investigated in detail.The experiment has been conducted and the validity of the 3D FE model of cold rotary forging has been verified.The results show that: 1) The contact force distribution is complex and exhibits an obvious non-uniform characteristic in the radial and circumferential directions; 2) The maximum contact force between the upper die and the workpiece is much larger than that between the lower die and the workpiece; 3) The contact force evolution history is periodic and every period experiences three different stages; 4) The total normal contact force is much larger than the total shear contact force at any given time.
文摘In this paper a 3D numerical model was developed to study the complicated interaction between waves and a set of tandem fixed cylinders.The fluid was considered to be inviscid and irrotational.Therefore,the Helmholtz equation was used as a governing equation.The boundary element method(BEM) was adopted to discretize the relevant equations.Open boundaries were used in far fields of the study domain.Linear waves were generated and propagated towards tandem fixed cylinders to estimate the forces applied on them.Special attention was paid to consideration of the effect on varying non-dimensional cylinder radius and distance between cylinders,ka and kd on forces and trapped modes.The middle cylinder wave forces and trapped modes in a set of nine tandem cylinders were validated utilizing analytical data.The comparisons confirm the accuracy of the model.The results of the inline wave force estimation on n tandem cylinders show that the critical cylinder in the row is the middle one for odd numbers of cylinders.Furthermore the results show that the critical trapped mode effect occurs for normalized cylinder radiuses close to 0.5 and 1.0.Finally the force estimation for n tandem cylinders confirms that force amplitude of the middle cylinder versus normalized separation distance fluctuates about that of a single cylinder.