期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
四边简支厚板的三维弹性分析 被引量:1
1
作者 杨正光 仲政 +1 位作者 戴瑛 何福保 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第12期1430-1433,共4页
将三维矩形板的位移变量按双三角级数展开 ,导出位移形式的平衡方程 ,以 3个位移分量及其一阶导数为状态变量 ,建立状态方程 .考虑四边简支边界条件 ,得到了四边简支正交各向异性三维矩形板的精确解 .由给出的均布载荷下的不同厚跨比及... 将三维矩形板的位移变量按双三角级数展开 ,导出位移形式的平衡方程 ,以 3个位移分量及其一阶导数为状态变量 ,建立状态方程 .考虑四边简支边界条件 ,得到了四边简支正交各向异性三维矩形板的精确解 .由给出的均布载荷下的不同厚跨比及不同长宽比的矩形板计算结果可知 ,与已有的理论解以及有限元计算结果非常吻合 。 展开更多
关键词 三维厚板 状态空间法 正交各向异性材料
下载PDF
固支三维弹性矩形厚板的精确解 被引量:4
2
作者 田斌 李锐 陈凯 《工程力学》 EI CSCD 北大核心 2012年第9期209-214,共6页
采用有限积分变换和状态空间理论相结合的方法推导出了固支三维弹性矩形厚板的精确解。在分析过程中摒弃以往薄板和中厚板理论中有关应力和位移函数的各种人为假定,完全从三维弹性力学基本方程出发,经过变量代换将关于应力和位移分量的... 采用有限积分变换和状态空间理论相结合的方法推导出了固支三维弹性矩形厚板的精确解。在分析过程中摒弃以往薄板和中厚板理论中有关应力和位移函数的各种人为假定,完全从三维弹性力学基本方程出发,经过变量代换将关于应力和位移分量的六阶偏微分方程组化为2个彼此独立的四阶、二阶矩阵微分方程,再利用有限积分变换的方法得到空间状态方程,并由Cayley-Hamilton定理求得应力和位移分量沿板厚度z方向的传递矩阵,最后利用边界条件定解出待定常数,经过有限积分逆变换解得了固支三维厚板的精确解。通过计算实例验证了该文方法的正确性。 展开更多
关键词 固支三维矩形 有限积分变换 状态向量 CAYLEY-HAMILTON定理 精确解
原文传递
3D thermoelasticity solutions for functionally graded thick plates 被引量:1
3
作者 Ji YING Chao-feng LU C. W. LIM 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第3期327-336,共10页
Thermal-mechanical behavior of functionally graded thick plates, with one pair of opposite edges simply supported, is investigated based on 3D thermoelasticity. As for the arbitrary boundary conditions, a semi-analyti... Thermal-mechanical behavior of functionally graded thick plates, with one pair of opposite edges simply supported, is investigated based on 3D thermoelasticity. As for the arbitrary boundary conditions, a semi-analytical solution is presented via a hybrid approach combining the state space method and the technique of differential quadrature. The temperature field in the plate is determined according to the steady-state 3D thermal conduction. The Mori-Tanaka method with a power-law volume fraction profile is used to predict the effective material properties including the bulk and shear moduli, while the effective coefficient of thermal expansion and the thermal conductivity are estimated using other micromechanics-based models. To facilitate the im-plementation of state space analysis through the thickness direction, the approximate laminate model is employed to reduce the inhomogeneous plate into a homogeneous laminate that delivers a state equation with constant coefficients. The present solutions are validated by comparisons with the exact ones for both thin and thick plates. Effects of gradient indices, volume fraction of ceramics, and boundary conditions on the thermomechanical behavior of functionally graded plates are discussed. 展开更多
关键词 Functionally graded plates Semi-analytical solutions 3D thermoelasticity Mori-Tanaka method
原文传递
On three-dimensional stress analysis of periodic notched plates under tension
4
作者 AFSHAR R BERTO F 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第9期1751-1757,共7页
By using the finite element method,three-dimensional models of a number of periodic blunt and sharp notches subjected to tension loading are investigated.The aim of this research is to investigate the thickness effect... By using the finite element method,three-dimensional models of a number of periodic blunt and sharp notches subjected to tension loading are investigated.The aim of this research is to investigate the thickness effect on the location of maximum stress and notch stress intensity factor(NSIF)of corresponding blunt and sharp periodic notches respectively.With this aim,different number of periodic notches as well as different notch opening angles are examined.While for two-dimensional plates weakened by periodic notches some results are available in the literature,this paper first faces the problem of three-dimensional cases.A total of about 100 geometrical configurations are investigated.It is found that,the effect of plate thickness of periodic notched components can be characterized by the relative value with respect to the depth of the notch(H/t).For the blunt periodic notches with relatively higher values of H/t ratio,the value of the maximum tensile stress is located near the free surface.On the contrary for lower values of H/t,it is placed at the middle plane.The same behaviour is observed for sharp periodic notches in terms of notch stress intensity factors. 展开更多
关键词 periodic notches three-dimensional problems notch stress intensity factor stress concentration factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部