We established a novel droplet model (with-gravity model) to show the gravity effect of the droplet in the contact angle experiment.By using with-gravity model, we obtained a three-dimensional topography of the drople...We established a novel droplet model (with-gravity model) to show the gravity effect of the droplet in the contact angle experiment.By using with-gravity model, we obtained a three-dimensional topography of the droplet including the height of the droplet, the shape of the baseline and the circumference of the baseline.Comparing the with-gravity model with the ideal spherical model, our model considered the measurement error caused by gravity effect in the contact angle experiment which is a key point to influence the three-dimension topography of the droplet.From the calculation of our model, we found that there were two important points to enhance the measurement error: the size of the droplet and the contact angle.With the droplet and the contact angle became larger, measurement error was obviously increased.展开更多
As a main constituent of geological body, the rock masses have distinct differences from other materials, one of which is that rock masses are initially stressed in their natural states. Hence, it is an extremely chal...As a main constituent of geological body, the rock masses have distinct differences from other materials, one of which is that rock masses are initially stressed in their natural states. Hence, it is an extremely challenging and significant research project to know the present residual stress of the rock masses in the earth's crust. Although some regularities of distribution of in-situ rock stresses can be deduced, the basic means to study the state of rock stress is in-situ stress measurement. After a brief review of several measuring methods of in-situ 3D rock stress, a new one, borehole wall stress relief method (BWSRM) to determine the in-situ 3D rock stress tensor in a single drilled borehole was proposed. Based on the principle of in-situ rock stress measurement with BWSRM, an original geostress measuring instrument was designed and manufactured. Preliminary experiments for determination of in-situ stress orientation and magnitude were carried out at an experimental tunnel in Jinping Ⅱ hydropower station in China, where the buried depth of overburden was about 2430 m. The results showed that it was feasible to measure the in-situ 3D rock stresses with BWSRM presented in this paper. The BWSRM has a broad prospect for in-situ 3D rock stress measurements in practical rock engineering.展开更多
基金Funded by Beijing Natural Science Foundation (No. 2062004)National Natural Science Foundation of China (No. 50502001 and No. 60576012)+1 种基金the Fundamental Research Funds for the Central UniversitiesNorth China Institute of Science and Technology (No. 2011B24)
文摘We established a novel droplet model (with-gravity model) to show the gravity effect of the droplet in the contact angle experiment.By using with-gravity model, we obtained a three-dimensional topography of the droplet including the height of the droplet, the shape of the baseline and the circumference of the baseline.Comparing the with-gravity model with the ideal spherical model, our model considered the measurement error caused by gravity effect in the contact angle experiment which is a key point to influence the three-dimension topography of the droplet.From the calculation of our model, we found that there were two important points to enhance the measurement error: the size of the droplet and the contact angle.With the droplet and the contact angle became larger, measurement error was obviously increased.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50579037, 50639080, 50979054)the Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering (Grant No. SKLZ0901)
文摘As a main constituent of geological body, the rock masses have distinct differences from other materials, one of which is that rock masses are initially stressed in their natural states. Hence, it is an extremely challenging and significant research project to know the present residual stress of the rock masses in the earth's crust. Although some regularities of distribution of in-situ rock stresses can be deduced, the basic means to study the state of rock stress is in-situ stress measurement. After a brief review of several measuring methods of in-situ 3D rock stress, a new one, borehole wall stress relief method (BWSRM) to determine the in-situ 3D rock stress tensor in a single drilled borehole was proposed. Based on the principle of in-situ rock stress measurement with BWSRM, an original geostress measuring instrument was designed and manufactured. Preliminary experiments for determination of in-situ stress orientation and magnitude were carried out at an experimental tunnel in Jinping Ⅱ hydropower station in China, where the buried depth of overburden was about 2430 m. The results showed that it was feasible to measure the in-situ 3D rock stresses with BWSRM presented in this paper. The BWSRM has a broad prospect for in-situ 3D rock stress measurements in practical rock engineering.