期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
三维坐标转换模型参数估计及精度评定的Bootstrap方法 被引量:1
1
作者 陈涛 《现代测绘》 2021年第S02期77-80,共4页
基于四元数的加权对称相似变换解法被广泛用于求解三维坐标转换模型,但该解法中参数估值与观测值之间存在复杂的非线性关系,且参数估计逐步的迭代过程使得参数的每一步估值都具有随机性,最终影响所求得的参数估值及其精度信息.针对这个... 基于四元数的加权对称相似变换解法被广泛用于求解三维坐标转换模型,但该解法中参数估值与观测值之间存在复杂的非线性关系,且参数估计逐步的迭代过程使得参数的每一步估值都具有随机性,最终影响所求得的参数估值及其精度信息.针对这个问题,结合Bootstrap重采样方法对参数估值及其精度信息进行改善,提出三维坐标转换模型参数估计及精度评定的Bootstrap方法,并给出了详细的计算步骤.仿真实验结果表明,结合Bootstrap方法的加权对称相似变换解法能够求得比直接实施加权对称相似变换解法更精确的参数估值且精度更高,从而验证了将Bootstrap重采样方法与加权对称相似变换解法结合并用于三维坐标转换模型的可行性及优势. 展开更多
关键词 三维坐标转换模型 总体最小二乘 BOOTSTRAP方法 参数估计 精度评定
下载PDF
三维七参数与二维七参数坐标转换的研究 被引量:13
2
作者 王仲锋 申景贇 赵达 《测绘与空间地理信息》 2019年第3期19-23,30,共6页
为了验证三维七参数和二维七参数坐标转换模型的可靠性,严格推导三维七参数及二维七参数转换模型,并用IGS站数据进行检验。结果表明,由三维七参数和二维七参数转换模型求出的坐标参数与布尔沙模型求出的坐标参数存在着明显差异,证明用... 为了验证三维七参数和二维七参数坐标转换模型的可靠性,严格推导三维七参数及二维七参数转换模型,并用IGS站数据进行检验。结果表明,由三维七参数和二维七参数转换模型求出的坐标参数与布尔沙模型求出的坐标参数存在着明显差异,证明用前两种模型求解的坐标转换参数只是普通的回归参数,它们不再具有坐标旋转、平移、缩放的实际意义,但均可以用于大区域坐标转换。 展开更多
关键词 坐标转换 三维七参数坐标转换模型 二维七参数坐标转换模型 布尔沙模型
下载PDF
任意旋转参数下的坐标转换算法及其在高铁测量中的应用 被引量:8
3
作者 顾玄龙 刘成龙 +1 位作者 郭伟 杨雪峰 《测绘科学技术学报》 CSCD 北大核心 2018年第5期451-456,共6页
现代智能型全站仪可以在不整平的情况下进行高精度的三维坐标测量,但应用到工程坐标系需要把不整平测量的三维坐标通过公共点进行坐标转换。对基于罗德里格矩阵直接解算的坐标转换数学模型进行了研究,编制了计算软件;并与布尔沙模型及... 现代智能型全站仪可以在不整平的情况下进行高精度的三维坐标测量,但应用到工程坐标系需要把不整平测量的三维坐标通过公共点进行坐标转换。对基于罗德里格矩阵直接解算的坐标转换数学模型进行了研究,编制了计算软件;并与布尔沙模型及罗德里格矩阵迭代算法的计算结果进行对比分析。该算法通过纯线性的方法解决了非线性约束问题,模型稳定可靠、转换精度高,适用于任意旋转角的三维空间坐标转换。通过该算法求得工程坐标系下全站仪不整平测量时的站心坐标,应用于高速铁路的轨道测量过程中,将会大幅度提高测量效率。 展开更多
关键词 全站仪不整平测量 任意旋转参数 罗德里格矩阵 三维坐标转换模型 轨道测量
下载PDF
三维坐标转换参数估计的平方根矩阵法 被引量:4
4
作者 杨磊 刘志平 《测绘科学》 CSCD 北大核心 2015年第12期140-143,共4页
针对三维坐标转换模型参数估计的核心是旋转矩阵的表示方法这一客观事实,该文通过对现有三维坐标转换模型中不同旋转矩阵的表示方法进行研究,依据任何一个方阵都可以惟一地分解为一个对称矩阵与一个反对称矩阵之和的矩阵理论,提出了一... 针对三维坐标转换模型参数估计的核心是旋转矩阵的表示方法这一客观事实,该文通过对现有三维坐标转换模型中不同旋转矩阵的表示方法进行研究,依据任何一个方阵都可以惟一地分解为一个对称矩阵与一个反对称矩阵之和的矩阵理论,提出了一种使用反对称矩阵表示旋转矩阵的新方法,并详细推导了基于布尔莎模型的三维坐标转换算法——平方根矩阵法;最后,根据文献算例对该方法进行实验分析。实验结果表明,该算法适用于大旋转角,且相较于方向余弦法、罗德里格矩阵法和单位四元数法具有计算收敛速度快、精确度高的优点。 展开更多
关键词 三维坐标转换模型 布尔莎模型 大旋转角 平方根矩阵法
原文传递
Applications of Lodrigues Matrix in 3D Coordinate Transformation 被引量:3
5
作者 YAO Jili XU Yufei XIAO Wei 《Geo-Spatial Information Science》 2007年第3期173-176,共4页
Three transformation models (Bursa-Wolf, Molodensky, and WTUSM) are generally used between two data systems transformation. The linear models are used when the rotation angles are small; however, when the rotation a... Three transformation models (Bursa-Wolf, Molodensky, and WTUSM) are generally used between two data systems transformation. The linear models are used when the rotation angles are small; however, when the rotation angles get bigger, model errors will be produced. In this paper, we present a method with three main terms:① the traditional rotation angles θ,φ,ψ are substituted with a,b,c which are three respective values in the anti-symmetrical or Lodrigues matrix; ② directly and accurately calculating the formula of seven parameters in any value of rotation angles; and ③ a corresponding adjustment model is established. This method does not use the triangle function. Instead it uses addition, subtraction, multiplication and division, and the complexity of the equation is reduced, making the calculation easy and quick. 展开更多
关键词 3D transformation linear model transformation equation Lodrigues matrix
下载PDF
SARC Model for Three-Dimensional Coordinate Transformation
6
作者 YAO Jili WANG Shuguang SUN Yating 《Geo-Spatial Information Science》 2006年第2期84-88,共5页
In this paper, a transformation model named SARC(static-filter adjustment with restricted condition) is presented, which is more practical and more rigorous in theory and fitting any angle of rotation parameter. The t... In this paper, a transformation model named SARC(static-filter adjustment with restricted condition) is presented, which is more practical and more rigorous in theory and fitting any angle of rotation parameter. The transformation procedure is divided into 4 steps: ① the original and object coordinates can be regarded as observations with errors; ② rigorous formula is firstly deduced in order to compute the first approximation of the transformation parameters by use of four common points and the transformation equation is linearized; ③ calculate the most probable values and variances of the seven transformation parameters by SARC model; ④ to demonstrate validity of SARC , an example is given. 展开更多
关键词 SARC 3D coordinate transformation transformation parameters transformation equation
下载PDF
The seamless model for three-dimensional datum transformation 被引量:19
7
作者 LI BoFeng SHEN YunZhong LI WeiXiao 《Science China Earth Sciences》 SCIE EI CAS 2012年第12期2099-2108,共10页
With extensive applications of space geodesy, three-dimensional datum transformation model has been necessarily used to transform the coordinates in the different coordinate systems.Its essence is to predict the coord... With extensive applications of space geodesy, three-dimensional datum transformation model has been necessarily used to transform the coordinates in the different coordinate systems.Its essence is to predict the coordinates of non-common points in the second coordinate system based on their coordinates in the first coordinate system and the coordinates of common points in two coordinate systems.Traditionally, the computation of seven transformation parameters and the transformation of noncommon points are individually implemented, in which the errors of coordinates are taken into account only in the second system although the coordinates in both two systems are inevitably contaminated by the random errors.Moreover, the coordinate errors of non-common points are disregarded when they are transformed using the solved transformation parameters.Here we propose the seamless (rigorous) datum transformation model to compute the transformation parameters and transform the non-common points integratively, considering the errors of all coordinates in both coordinate systems.As a result, a nonlinear coordinate transformation model is formulated.Based on the Gauss-Newton algorithm and the numerical characteristics of transformation parameters, two linear versions of the established nonlinear model are individually derived.Then the least-squares collocation (prediction) method is employed to trivially solve these linear models.Finally, the simulation experiment is carried out to demonstrate the performance and benefits of the presented method.The results show that the presented method can significantly improve the precision of the coordinate transformation, especially when the non-common points are strongly correlated with the common points used to compute the transformation parameters. 展开更多
关键词 coordinate transformation COLLOCATION total least squares Bursa model Gauss-Newton method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部