The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities a...The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed.展开更多
The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable t...The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable thermal conductivity and thermal radiation. Arising nonlinear analysis for velocity and temperature is computed. Discussion to importantly involved parameters through plots is presented. Comparison between present and previous limiting solutions is shown. Numerical values of local Nusselt number are computed and analyzed. It can be observed that the effects of viscoelastic parameter and Hartman number on the temperature profile are similar in a qualitative way. The variations in temperature are more pronounced for viscoelastic parameter K in comparison to the Hartman number M. The parameters N and ε give rise to the temperature. It is interesting to note that values of local Nusselt number are smaller for the larger values of ε.展开更多
As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational ...As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational intractability. The parallelization of heat equation is available to improve the simulation model efficiency. In order to solve the three-dimensional heat problems more rapidly, the OpenMP was adopted to parallelize the preconditioned conjugate gradient (PCG) algorithm in this paper. A numerical experiment on the three-dimensional heat equation model was carried out on a computer with four cores. Based on the test results, it is found that the execution time of the original serial PCG program is about 1.71 to 2.81 times of the parallel PCG program executed with different number of threads. The experiment results also demonstrate the available performance of the parallel PCG algorithm based on OpenMP in terms of solution quality and computational performance.展开更多
文摘The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed.
基金supported by the Deanship of Scientific Research (DSR) of King Abdulaziz University, Jeddah, Saudi Arabia
文摘The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable thermal conductivity and thermal radiation. Arising nonlinear analysis for velocity and temperature is computed. Discussion to importantly involved parameters through plots is presented. Comparison between present and previous limiting solutions is shown. Numerical values of local Nusselt number are computed and analyzed. It can be observed that the effects of viscoelastic parameter and Hartman number on the temperature profile are similar in a qualitative way. The variations in temperature are more pronounced for viscoelastic parameter K in comparison to the Hartman number M. The parameters N and ε give rise to the temperature. It is interesting to note that values of local Nusselt number are smaller for the larger values of ε.
文摘As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational intractability. The parallelization of heat equation is available to improve the simulation model efficiency. In order to solve the three-dimensional heat problems more rapidly, the OpenMP was adopted to parallelize the preconditioned conjugate gradient (PCG) algorithm in this paper. A numerical experiment on the three-dimensional heat equation model was carried out on a computer with four cores. Based on the test results, it is found that the execution time of the original serial PCG program is about 1.71 to 2.81 times of the parallel PCG program executed with different number of threads. The experiment results also demonstrate the available performance of the parallel PCG algorithm based on OpenMP in terms of solution quality and computational performance.