Any tidal defense engineering involves the collection and analysis of massive information about engineering structures and their surrounding environment. Traditional method, which is carried out mainly by means of two...Any tidal defense engineering involves the collection and analysis of massive information about engineering structures and their surrounding environment. Traditional method, which is carried out mainly by means of twodimensional drawings and textures, is not efficient and intuitive enough to analyze the whole project and reflect its spatial relationship. Three-dimensional visual simulation provides an advanced technical means of solving this problem. In this paper, triangular irregular network (TIN) model simplified by non-uniform rational B-splines (NURBS) technique was used to establish the digital terrain model (DTM) of a super large region. Simulation of dynamic water surface was realized by combining noise function with sine wave superposition method. Models of different objects were established with different modeling techniques according to their characteristics. Application of texture mapping technology remarkably improved the authenticity of the models. Taking the tidal defense engineering in the new coastal region of Tianjin as a case study, three-dimensional visual simulation and dynamic roaming of the study area were realized, providing visual analysis and visible demonstration method for the management and emergency decision-making associated with construction.展开更多
Cocrystal has been discovered and studied for more than 170 years since 1844, while the applications to optoelectronics only begin in the last decade. Several general questions that chemists and materials scientists c...Cocrystal has been discovered and studied for more than 170 years since 1844, while the applications to optoelectronics only begin in the last decade. Several general questions that chemists and materials scientists currently seek to answer are: can we design and control the molecular self-assembly and cocrystal growth, what’s the packing-property correlations, as well as how can we improve device parameters for real applications in industry. In this contribution, we review our and other groups’ recent advances in the cocrystal research field sequentially including:(1) nucleation and growth mechanisms for selective preparation of cocrystals with different donor/acceptor ratio and morphology;(2) charge transport and electronic devices, particularly field-effect transistor(FET) and photo-response device. We discuss the in-situ single crystal device fabrication method, ambipolar charge transport, and molecular packingcharge separation correlation;(3) photonic and optical property, focusing on optical waveguide, photonic logic computation, and nonlinear optics(NLO). We present unusual optical properties revealed by advanced instruments and general structure-function relations for future study. Importantly, the extensive investigations described herein yield in-depth and detailed understandings of molecular cocrystals,and show that such bi-component material systems together with the developed instrument measurement methodologies have the potential to initiate unconventional electronic and photonic science and technology.展开更多
基金Supported by Tianjin Research Program of Application Foundation and Advanced Technology (No.12JCZDJC29200)Foundation for Innovative Research Groups of National Natural Science Foundation of China (No.51021004)National Key Technology R&D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘Any tidal defense engineering involves the collection and analysis of massive information about engineering structures and their surrounding environment. Traditional method, which is carried out mainly by means of twodimensional drawings and textures, is not efficient and intuitive enough to analyze the whole project and reflect its spatial relationship. Three-dimensional visual simulation provides an advanced technical means of solving this problem. In this paper, triangular irregular network (TIN) model simplified by non-uniform rational B-splines (NURBS) technique was used to establish the digital terrain model (DTM) of a super large region. Simulation of dynamic water surface was realized by combining noise function with sine wave superposition method. Models of different objects were established with different modeling techniques according to their characteristics. Application of texture mapping technology remarkably improved the authenticity of the models. Taking the tidal defense engineering in the new coastal region of Tianjin as a case study, three-dimensional visual simulation and dynamic roaming of the study area were realized, providing visual analysis and visible demonstration method for the management and emergency decision-making associated with construction.
基金This work was supported by the National Key R&D Program(2017YFA0204503,2016YFB0401100)the National Natural Science Foundation of China(91833306,21875158,51633006,51703159,and 51733004)。
文摘Cocrystal has been discovered and studied for more than 170 years since 1844, while the applications to optoelectronics only begin in the last decade. Several general questions that chemists and materials scientists currently seek to answer are: can we design and control the molecular self-assembly and cocrystal growth, what’s the packing-property correlations, as well as how can we improve device parameters for real applications in industry. In this contribution, we review our and other groups’ recent advances in the cocrystal research field sequentially including:(1) nucleation and growth mechanisms for selective preparation of cocrystals with different donor/acceptor ratio and morphology;(2) charge transport and electronic devices, particularly field-effect transistor(FET) and photo-response device. We discuss the in-situ single crystal device fabrication method, ambipolar charge transport, and molecular packingcharge separation correlation;(3) photonic and optical property, focusing on optical waveguide, photonic logic computation, and nonlinear optics(NLO). We present unusual optical properties revealed by advanced instruments and general structure-function relations for future study. Importantly, the extensive investigations described herein yield in-depth and detailed understandings of molecular cocrystals,and show that such bi-component material systems together with the developed instrument measurement methodologies have the potential to initiate unconventional electronic and photonic science and technology.