In terms of asymmetrical three-dimensional distribution(ID) of luminous intensity(LI) of light-emitting-diode(LED),a testing system was conducted in this study. Design and principle of the testing system were introduc...In terms of asymmetrical three-dimensional distribution(ID) of luminous intensity(LI) of light-emitting-diode(LED),a testing system was conducted in this study. Design and principle of the testing system were introduced. 31 photometers were placed on a concentric circle,and all of them were used to gather LI data of LED at the same time. The data acquisition card(DAC) was used to gather multichannel data and controlled motor. Experimental results indicated that the testing system had achieved the goal of testing three-dimensional distribution of LI. And each parameter could meet the requirements of industrial production and measurement.展开更多
Liquid argon flow along a nanochannel is studied using molecular dynamics (MD) simulation in this work.Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used as the MD simulator.The effects of redu...Liquid argon flow along a nanochannel is studied using molecular dynamics (MD) simulation in this work.Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used as the MD simulator.The effects of reduced forces at 0.5,1.0 and 2.0 on argon flow on system energy in the form of system potential energy,pressure and velocity profile are described.Output in the form of three-dimensional visualization of the system at steady-state condition using Visual Molecular Dynamics (VMD) is provided to describe the dynamics of the argon atoms.The equilibrium state is reached after 16000 time steps.The effects on system energy,pressure and velocity profile due to reduced force of 2.0 (F2) are clearly distinguishable from the other two lower forces where sufficiently high net force along the direction of the nanochannel for F2 renders the attractive and repulsive forces between the argon atoms virtually non-existent.A reduced force of 0.5 (F0.5) provides liquid argon flow that approaches Poiseuille (laminar) flow as clearly shown by the n-shaped average velocity profile.The extension of the present MD model to a more practical application affords scientists and engineers a good option for simulation of other nanofluidic dynamics processes.展开更多
Localisation microscopy overcomes the diffraction limit by measuring the position of individual molecules to obtain optical images with a lateral resolution better than 30 nm. Single molecule localisation microscopy w...Localisation microscopy overcomes the diffraction limit by measuring the position of individual molecules to obtain optical images with a lateral resolution better than 30 nm. Single molecule localisation microscopy was originally demonstrated only in two dimensions but has recently been extended to three dimensions. Here we develop a new approach to three-dimensional (3D) localisation microscopy by engineering of the point-spread function (PSF) of a fluorescence microscope. By introducing a linear phase gradient between the two halves of the objective pupil plane the PSF is split into two lateral lobes whose relative position depends on defocus. Calculations suggested that the phase gradient resulting from the very small tolerances in parallelism of conventional slides made from float glass would be sufficient to generate a two-lobed PSF. We demonstrate that insertion of a suitably chosen microscope slide that occupies half the objective aperture combined with a novel fast fitting algorithm for 3D localisation estimation allows nanoscopic imaging with detail resolution well below 100 nm in all three dimensions (standard deviations of 20, 16, and 42 nm in x, y, and z directions, respectively). The utility of the approach is shown by imaging the complex 3D distribution of microtubules in cardiac muscle cells that were stained with conventional near infrared fluorochromes. The straightforward optical setup, minimal hardware requirements and large axial localisation range make this approach suitable for many nanoscopic imaging applications.展开更多
Determination of light absorption distribution in the prostate tissue irradiated by diffusing light source is important for the treatment planning.In this paper,a three-dimensional(3D)optical model of human prostate i...Determination of light absorption distribution in the prostate tissue irradiated by diffusing light source is important for the treatment planning.In this paper,a three-dimensional(3D)optical model of human prostate is developed,and the light absorption distribution in the prostate tissue is estimated by Monte Carlo simulation method.Light distribution patterns including 3D distributions in the tissue model irradiated by two diffusing light sources are obtained and compared.Also,the impacts of length and energy of cylinder diffusing light source on the irradiance volume are demonstrated.Those results will be significant for the nondestructive qualitative assessments of photodosimetry in biomedical phototherapy.展开更多
文摘In terms of asymmetrical three-dimensional distribution(ID) of luminous intensity(LI) of light-emitting-diode(LED),a testing system was conducted in this study. Design and principle of the testing system were introduced. 31 photometers were placed on a concentric circle,and all of them were used to gather LI data of LED at the same time. The data acquisition card(DAC) was used to gather multichannel data and controlled motor. Experimental results indicated that the testing system had achieved the goal of testing three-dimensional distribution of LI. And each parameter could meet the requirements of industrial production and measurement.
基金Supported by the Academy of Sciences,Malaysia and Ministry of Science and Technology & Innovation
文摘Liquid argon flow along a nanochannel is studied using molecular dynamics (MD) simulation in this work.Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used as the MD simulator.The effects of reduced forces at 0.5,1.0 and 2.0 on argon flow on system energy in the form of system potential energy,pressure and velocity profile are described.Output in the form of three-dimensional visualization of the system at steady-state condition using Visual Molecular Dynamics (VMD) is provided to describe the dynamics of the argon atoms.The equilibrium state is reached after 16000 time steps.The effects on system energy,pressure and velocity profile due to reduced force of 2.0 (F2) are clearly distinguishable from the other two lower forces where sufficiently high net force along the direction of the nanochannel for F2 renders the attractive and repulsive forces between the argon atoms virtually non-existent.A reduced force of 0.5 (F0.5) provides liquid argon flow that approaches Poiseuille (laminar) flow as clearly shown by the n-shaped average velocity profile.The extension of the present MD model to a more practical application affords scientists and engineers a good option for simulation of other nanofluidic dynamics processes.
文摘Localisation microscopy overcomes the diffraction limit by measuring the position of individual molecules to obtain optical images with a lateral resolution better than 30 nm. Single molecule localisation microscopy was originally demonstrated only in two dimensions but has recently been extended to three dimensions. Here we develop a new approach to three-dimensional (3D) localisation microscopy by engineering of the point-spread function (PSF) of a fluorescence microscope. By introducing a linear phase gradient between the two halves of the objective pupil plane the PSF is split into two lateral lobes whose relative position depends on defocus. Calculations suggested that the phase gradient resulting from the very small tolerances in parallelism of conventional slides made from float glass would be sufficient to generate a two-lobed PSF. We demonstrate that insertion of a suitably chosen microscope slide that occupies half the objective aperture combined with a novel fast fitting algorithm for 3D localisation estimation allows nanoscopic imaging with detail resolution well below 100 nm in all three dimensions (standard deviations of 20, 16, and 42 nm in x, y, and z directions, respectively). The utility of the approach is shown by imaging the complex 3D distribution of microtubules in cardiac muscle cells that were stained with conventional near infrared fluorochromes. The straightforward optical setup, minimal hardware requirements and large axial localisation range make this approach suitable for many nanoscopic imaging applications.
基金supported by the National Natural Science Foundation of China(Nos.61178089 and 81201124)the Fujian Provincial Key Program of Science and Technology(No.2011Y0019)+1 种基金the Fujian Provincial Education Science Research Project of Young Teachers(No.JA14189)the Huang Huizhen Foundation for Discipline Construction in Jimei University(No.ZB2013068)
文摘Determination of light absorption distribution in the prostate tissue irradiated by diffusing light source is important for the treatment planning.In this paper,a three-dimensional(3D)optical model of human prostate is developed,and the light absorption distribution in the prostate tissue is estimated by Monte Carlo simulation method.Light distribution patterns including 3D distributions in the tissue model irradiated by two diffusing light sources are obtained and compared.Also,the impacts of length and energy of cylinder diffusing light source on the irradiance volume are demonstrated.Those results will be significant for the nondestructive qualitative assessments of photodosimetry in biomedical phototherapy.